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Abstract

We report on the substructure of visibility functions in the delay domain of PSRs B0329+54, B0823+26, B0834
+06, B1933+16, and B0833–45 (Vela) observed with Earth–Earth and RadioAstron space–Earth two-element
interferometers at frequencies of 324 and 1668 MHz. All visibility functions display unresolved spikes distributed
over a range of delays. They are due to band-limited scintillation noise and related to the scattering time. The
envelopes for each but the Vela pulsar are well fit by a single Lorentzian, which we interpret as being indicative of
isotropic scattering on the plane of the sky due to a thin scattering screen between the pulsar and us. In contrast, the
envelope for the Vela pulsar needs to be mostly fit by at least two Lorentzians, a narrow and a broad one at the
same zero delay. We interpret this characteristic as indicative of anisotropic scattering due to a more complex
structure of scattering screens in the supernova remnant. The possibility of describing the delay visibility functions
by Lorentzians is likely a general property of pulsars and offers a new way of describing the scattering parameters
of the intervening interstellar medium. Furthermore, for all of our pulsars, the unresolved spikes in visibility
functions of similar projected baselines were well correlated, indicating that the telescopes are located in the same
diffraction spot. The correlation vanished for visibilities from largely different baselines, when some radio
telescopes are not in the same spot.

Unified Astronomy Thesaurus concepts: Interstellar scintillation (855); Radio pulsars (1353); Very long baseline
interferometry (1769); Interstellar scattering (854)

1. Introduction

Radio emission of compact celestial radio sources in our
Galaxy and beyond can be strongly scattered by inhomogene-
ities of the interstellar medium (ISM) located between the
source and the observer. This process causes angular broad-
ening of the source image, distortion of radio spectra, and
intensity fluctuations or scintillations of the radio emission (see,
e.g., Prokhorov et al. 1975; Rickett 1977; Gwinn et al. 1998;
Shishov et al. 2003). Here we focus on the effects of scattering
on very long baseline interferometry (VLBI) and space VLBI
observations of compact sources at frequencies at which these
effects are strong. We have chosen pulsars as targets, since they
are intrinsically pointlike even when observed with space VLBI
on baselines as long as 200,000 km, as provided by
RadioAstron (Kardashev et al. 2013). Therefore, the structure
of the source does not need to be considered in the analysis,
and the results are essentially exclusively due to scattering
characteristics of the ISM (see, e.g., Johnson & Gwinn 2015;
Johnson 2016; Johnson & Narayan 2016 for recent studies on
this subject). In previous studies, some characteristics of the
scattering screens in the ISM in terms of the pulsar’s
scintillation time, tscint; scattering time, tsc; angular size of the
scattering disk, qsc; and decorrelation bandwidth, Dfdif , were
already obtained. Assuming a single thin scattering screen and
combining tsc with qsc, the distance, ds, of the scattering screen
relative to the distance, D, of the pulsar could be determined.
An analysis of these measurements indicates a possible layered
structure of the interstellar plasma in our Galaxy (Gwinn et al.
2016; Popov et al. 2016, 2017, 2019; Fadeev et al. 2018). In
previous work, Popov et al. (2016) presented an example of the

VLBI visibility function for the pulsar PSR B1749–28. They
found for the first time that for this pulsar, the dependence of
the average visibility function on delay can be well fit by a
Lorentzian. In this paper, we follow Popov et al. (2016) and
focus on five more pulsars, four of them older pulsars and one
of them the young Vela pulsar, PSR B0833–45, which is still
embedded in its supernova remnant and also likely in the larger
Gum Nebula. We selected the pulsars on the basis of their peak
flux density in order to get a sufficiently high signal-to-noise
ratio for the analysis, as well as on the basis of the selected
pulsars having a relatively large range of dispersion measures.
Further, the scattering time, tsc, needed to be large enough so
that a sufficiently large number of points of the envelope could
be used for the model fit. Since the bandwidth of our VLBI and
space VLBI observations was 16 MHz, the sampling step in
delay of our visibility functions was 31.25 ns. That restricted
our choice to pulsars with t m 0.5 ssc so that at least a dozen
sampling points could be used for the fit. An additional concern
was the selection of the observing frequency. Usually, our first
choice was to use data obtained at the lowest of the available
frequencies, namely 324 MHz. However, for two pulsars, the
dispersion measure was so high that we needed to select the
next higher available frequency, namely 1668 MHz, to allow
for a good fit of the visibility function.
Table 1 lists the pulsars with their periods, dispersion

measures, distances, galactic coordinates, observing frequen-
cies, scattering parameters obtained at the observing frequen-
cies, and ratios of the distance of the scattering screen relative
to the distance of the pulsar, obtained in our previous
publications cited above. This is a small but somewhat
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representative list of pulsars with respect to the range of
dispersion measures, galactic latitudes, and scattering times.

Of particular interest in our work reported here are
investigations of the influence of scattering on the interfero-
metric visibility function of a two-element interferometer. The
detailed analysis of the substructure of the visibility function
may give us additional information on the characteristics of the
scattering screens. Early theoretical studies of visibility
functions of two-element interferometers were presented by
Goodman & Narayan (1989) and Narayan & Goodman (1989).
They distinguished between fast and slow refractive scintilla-
tions with corresponding timescales of tdif and tref , with the
diffractive timescale in particular related to the size of the
diffraction spot, rdif . The physical interpretation of a visibility
function depends on the integration time, tint, and its relation to
the two timescales. We can distinguish between the snapshot
mode when <t tint dif , averaged mode when < <t t tdif int ref ,
and ensemble averaging mode when >t tint ref . For the meter
and decimeter wavelength range typical timescales, tdif and tref ,
sources in our Galaxy are several minutes for diffraction
scintillations and several weeks for refraction scintillations,
respectively. For our VLBI observations with typical scan
lengths of 1000 s, the visibility function can be measured in
either the snapshot mode or the averaged mode. Here we
present an analysis of the structure of the delay visibility
function for our pulsars in the snapshot and average modes and
search for characteristics that can be related to scattering
properties.

2. Observations and Data Reduction

Our observations were carried out as part of the scientific
program of the RadioAstron space VLBI mission (Kardashev
et al. 2013). For this study, we selected pulsar data from several
projects: RAES07a, RAES07b, and RAES10a-d, related to the
RadioAstron Early Science Program; RAGS04aj, RAGS04ak,
and RAGS04al, related to general observing time proposals;
and RAKS02aa and RAKS02as, related to the Key Science
Program. The observation and data reduction parameters are
given in Table 2.
All of our data were processed with the ASC correlator in

Moscow with gating and dedispersion activated (Likhachev
et al. 2017). The ON-pulse window was centered on the main
component of the average profile, and the OFF-pulse window
was offset from the main pulse by half a period and had the
same width as the ON-pulse window. The OFF-pulse window
was used to establish bandpass correction for auto- and cross-
spectra. The correlator output was sampled synchronously with
the pulsar period. The results of the correlation were given as
complex cross-correlation spectra (cross-spectra) written in
standard FITS format. In general, the cross-spectra were
obtained for each period of the pulsar. Only for pulsar
B0833–45 (Vela) with a very short period (0.0892 s) were
cross-spectra integrated in the correlator over 10 periods, still
providing good time resolution for further analysis.
At the next stage, we retrieved the results of correlation

processing from the FITS files using the CFITSIO package
(Pence 1999) and computed the fringe visibility magnitude

Table 1
Parameters of Pulsars

PSR P DM D l b ν tscint tsc qsc Dfdif d Ds Reference
(s) (pc -cm 3) (kpc) (deg) (deg) (MHz) (s) (μs) (mas) (kHz)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

B0329+54 0.714 26.7 1.03 145.0 −1.2 324 110 4.1 4.8 7.0 0.60 1
B0823+26 0.531 19.4 0.36 197.0 31.7 324 70 0.46 1.8 140 0.72 2
B0834+06 1.274 12.8 0.62 219.7 26.3 324 220 0.69 1.2 210 0.64 2
B1933+16 0.359 158.5 3.70 52.4 −2.1 1668 42 0.85 0.84 50 0.73 3
B0833–45 0.089 69.0 0.29 263.6 −2.8 1668 6.2 7.6 6.4 7.3 0.79-0.87 4

Note. Columns are as follows: (1) pulsar name, (2) pulsar period, (3) dispersion measure, (4) distance, (5) galactic longitude, (6) galactic latitude, (7) observing
frequency, (8) scintillation time, (9) scattering time, (10) scattering angle, (11) decorrelation bandwidth, (12) ratio of the distance of the scattering screen to the
distance of the pulsar, and (13) reference where the parameters in columns (10)–(12) were determined.
References. (1) Popov et al. (2017), (2) Fadeev et al. (2018), (3) Popov et al. (2016), (4) Popov et al. (2019).

Table 2
Parameters of Data Reduction

PSR Obs. Code Date ν Tscan Ttot Pol. Nch dtcor Tvis Radio Telescopes
(yy.mm.dd) (MHz) (s) (hr) (s) (s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

B0329+54 RAES10,a-d 2012 Nov 26–29 324 570 4 LR 4096 0.714 34.3 GB
B0823+26 RAGS04ak,aj 2014 Mar 11 324 1170 17 LR 1024 0.5306 34.0 GB,WB
B0834+06 RAGS04al 2015 Apr 8 324 1170 1.5 LR 65536 1.2737 145.2 AR,GB,WB
B1933+16 RAKS02aa 2013 Aug 1 1668 570 1.5 R 2048 0.3587 31.6 AR,TR,SV
B0833–45 RAKS02as 2013 Dec 15 1668 1170 2.5 LR 8192 0.9830 7.9 AT,HO,CD,HH
B0833–45 RAES07a 2012 May 10 1668 570 3.0 LR 8192 0.9830 7.9 PA,MP,TI,HH,HO
B0833–45 RAES07b 2012 May 18 1668 570 1.5 LR 8192 0.9830 7.9 PA,AT,HO,MP,HH

Note. Columns are as follows: (1) pulsar name, (2) code of the experiment, (3) date of observation, (4) observing center frequency, (5) duration of observing scan in
seconds, (6) total observing time in hours, (7) circular polarization, left hand, LCP, L, right hand, RCP, R, (8) number of channels used in the correlator, (9) sampling
time of the correlator output in seconds, (10) time in seconds for visibility calculation, (11) Earth radio telescopes: AR—Arecibo, GB—Green Bank, AT—Australia
Telescope Compact Array, HO—Hobart, HH—Hartebeesthoek, CD—Ceduna, MP—Mopra, SV—Svetloye, TI—Tidbinbilla, PA—Parkes, WB—Westerbork.
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t-V f,A B∣ ( )∣ as a function of delay, τ, and fringe rate, f, for
every time interval of duration Tvis with <T tvis scint by using the
Tvis/dtcor consequent complex cross-spectra from the correlator
output for each two-element interferometer with stations A and
B. Then, for each τ, we determined the fringe rate that
maximizes t-V f,A B∣ ( )∣. Not surprisingly, these fringe rates
were always close to zero. For further analysis, we used the
cross section, t t=- -V f V,A B A Bmax∣ ( )∣ ∣ ( )∣ at fmax. For every
scan of duration Tscan, we obtained Tscan/Tvis cross sections of
the visibility function, t-VA B∣ ( )∣. We call this set of cross
sections of the visibility magnitudes, which are consecutive in
time, t, the dynamic visibility magnitude, t- tDV ,A B∣ ( )∣.

Our goal was to probe these functions in detail, study their
characteristics as a function of projected baseline length (where
possible), and extract scintillation parameters from them. Since
these functions were relatively noisy and not appropriate for
obtaining single scintillation parameter values, we used two-
dimensional cross-correlation functions (CCFs) and autocorre-
lation functions (ACFs) to improve the signal-to-noise ratio.

We distinguish between one- and two-baseline correlations
of interferometer observations. In particular, for one-baseline
correlations of interferometer observations, we compute the
two-dimensional CCFs tD Dt2dCCF ,LR( ) between the left-
circular polarization (LCP) and right-circular polarization
(RCP) channels of t- tDV ,A B∣ ( )∣. First, we subtracted the
mean level in every t- tDV ,A B∣ ( )∣ determined “off-spot,” i.e.,
outside the region of increased values of t-VA B∣ ( )∣. Then we
computed the CCFs.5 The resulting functions,

tD Dt2dCCF ,LR( ), were then normalized by the corresponding
2dACF, that is,
by

t tD = D = ´ D = D =t t2dACF 0, 0 2dACF 0, 0L R( ) ( ) .
For the observations of B1933+16 and part of those of PSR

B0833–45 (Vela), we recorded only LCP or RCP and therefore
considered only the ACFs, tD Dt2dACF ,L( ) or

tD Dt2dACF ,R( ), for our further analysis of one-baseline
correlations, instead of the CCF between the RCP and LCP
channels.

The last functions to mention concern two-baseline correla-
tions of interferometer observations. Here we measure
similarities between the output of, for instance, a short baseline
interferometer and a long baseline interferometer to obtain
information about the difference in the diffraction pattern the
two interferometers observe. The resulting functions are

- ´ -2dCCF A B C D
LL
( ) ( ) and - ´ -2dCCF A B C D

RR
( ) ( ) , which are the

cross-correlations between t- tDV ,A B
L∣ ( )∣ and t- tDV ,C D

L∣ ( )∣
for the two baselines, AB and CD, for the LCP channel and the
equivalent correlations for the RCP channel. At the heart of our
analysis are the cross sections of these functions at D =t 0.
These are the one-dimensional functions tD-CCF A B

LR ( ),
tD-ACF A B

L ( ), tD-ACF A B
R ( ), tD- ´ -CCF A B C D

L ( )( ) ( ) ,

and tD- ´ -CCF A B C D
R ( )( ) ( ) .

3. Results

Our results are obtained from the five one-dimensional CCF
and ACF functions described at the end of the previous section.
Typical examples of, for instance, the function tD-CCF A B

LR ( )
for the baseline GB-WB for PSR B0823+26 and AT-HO for
PSR B0833–45 (Vela) are given in Figures 1(a) and (b). The
function consists of an unresolved spike and a broad
component. We describe each in turn, give examples of these
functions for all five pulsars, and then describe the parameter
estimates.

3.1. The Unresolved Spike

Almost all of our three CCF and both of our ACF functions
consist of an unresolved spike at zero delay lag, that is, at
tD = 0, and a smoothly and slowly varying envelope (SVE)

starting at an amplitude of approximately half the amplitude of
the spike and extending to several μs in negative and positive
delay lags.
These characteristics are reminiscent of the ACF for pulsar

microstructure, consisting of an unresolved spike at zero time
lag and a broader component due to the fast intensity
fluctuations of the radio emission of pulsars on the timescale
of tens to hundreds of μs. These characteristics were interpreted
by Rickett (1975) in terms of the amplitude-modulated
noise (AMN).
Since the individual visibility functions were computed in

the snapshot mode, we interpret the fine structure of tVAB∣ ( )∣ in
this mode to be band-limited white noise. We call it
scintillation noise (SN). The amplitude of the SN is decreasing
with the increasing magnitude of the time lag, Δt, in our two-
dimensional ACFs, tD Dt2dACF ,L( ) and tD Dt2dACF ,R( ),
as demonstrated in Figure 2 for the pulsar B0329+54. Such
behavior can be fit by a Gaussian. Thus, we estimated the
scintillation time, =t 115 sscint , as the e1 half-width of this
curve. The scintillation time is in approximate agreement with
the value of =t 110 112 sscint – determined earlier for this pulsar
from single-dish autocorrelation spectra (Popov et al. 2017).
We find the same characteristic of the SN amplitude decreasing
with the increasing magnitude of the time lag, Δt, approxi-
mately as a Gaussian for each pulsar in our sample and list our
values for tscint in Table 1.

3.2. The Broad Component

Apart from the unresolved spike, all of our one-dimensional
CCFs and ACFs are characterized by a broad component with
an SVE starting at an amplitude of approximately half the
amplitude of the unresolved spike at zero delay lag and
extending to several μs in negative and positive delay lags.
Following Popov et al.ʼs (2016) example of PSR B1749–28,
we fit the shape of the SVE by a Lorentzian function,

t tD = D + +L rw w C. 12 2( ) ( ) ( )

We allow for a constant, C, to compensate for a possible offset
in t- tDV ,A B∣ ( )∣.6 The maximum of the function above the5 For technical reasons, instead of cross-correlating the two functions directly,

we derived the cross-correlation by using the cross-correlation theorem. This
procedure simplified the computation in our case. We computed the functions
2dCCF as the inverse Fourier transform of the product of the two-dimensional
complex cross-spectra of t- tDV ,A B

R∣ ( )∣ in RCP and t- tDV ,A B
L∣ ( )∣ in LCP. In

order to avoid the cyclic convolution inherent in the Fourier transform, we
expanded the functions t- tDV ,A B

R∣ ( )∣ and t- tDV ,A B
L∣ ( )∣ by zero values twice

in both coordinates.

6 In principle, the constant C should be equal to zero if the baseline of the
individual visibility magnitudes, t-VA B∣ ( )∣, could be exactly known and
accurately subtracted. However, errors in the determinations of the baselines
migrated into the construction of the dynamic visibility magnitude,

t- tDV ,A B∣ ( )∣, and therefore into the CCFs and ACFs under consideration
here. The constant, C, eliminated this influence in the fit.
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constant, C, is A=r/w at tD = 0, and the half-width at half-
maximum (HWHM) of the function above C is w.

Temporal smearing of a pulse due to scattering in the ISM is
conventionally characterized by the scattering time, tsc. As we

show in the Appendix, t » w 2sc for the Lorentzians of
Equation (1) fit to our CCFs and ACFs. While the determina-
tion of tsc through temporal smearing of pulses is often difficult
and can be prone to relatively large uncertainties, our new
method of determining tsc is relatively easy and can provide
more accurate values. We determine the parameters through
least-squares fitting. In Figure 1(a), we show the fit with a
yellow line. For B0833–45 (Vela), it was obvious that a
Lorentzian would not provide for a good fit. Instead, the sum of
two Lorentzians with different parameters was needed. We
discuss the special case of PSR B0833–45 (Vela) in more detail
below. We show the fits in Figure 1(b).

3.3. Typical Examples of CCFs and ACFs for All Five Pulsars

In Figure 3, we present examples of the CCFs and ACFs and
the results of the Lorentzian fits for all of the pulsars in our
sample. However, instead of plotting the fit Lorentzians as in
Figure 1, we plot the difference between the measured CCFs or
ACFs and the fit Lorentzians to more clearly visually indicate
the goodness of the fit. Furthermore, we normalize the
difference by the value L(0), which is shown in Figure 3 by
horizontal dotted lines. The normalization permits us to directly
compare the observed values of CCFs and ACFs at tD = 0
with the value of L2 0( ) predicted by the AMN model. In panels
(a)–(c), (e), and (f), we show the CCFs and, in one case, the
ACF for one baseline only. Assuming only a minor influence of

Figure 1. Upper panels: examples of the function, tD-CCF A B
LR ( ), for (a) PSR B0823+26 for the baseline GB-WB and (b) PSR B0833–45 (Vela) for the baseline AT-

HO given in red. The best-fit Lorentzian functions outside zero lag in delay are given in yellow. For PSR B0833–45 (Vela), the best fit is a sum of two Lorentzian
functions, shown as violet and magenta lines. Lower panels: results of numerical simulations of distributions of scattered rays in delay, assuming (c) a circular
scattering disk and (d) an elliptical scattering disk with a 1:3 axis ratio (see Section 4 for explanation).

Figure 2. Relative amplitude of the unresolved spike vs. time lag, Δt, in our
two-dimensional ACFs for PSR B0329+54. The dashed line corresponds to a
fit with a Gaussian.

4
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cross-correlating the RCP with the LCP channel instead of
autocorrelating one polarization only, these five plots should
have similar characteristics concerning the unresolved spike. In
panels (d), (g), and (h), we show the CCFs for two baselines. In
all of our plots, for B0329+54, B0823+26, B0834+06, and
B1933+16, one Lorentzian alone fits the CCFs and the ACF

well. For PSR B0833–45 (Vela), however, as already indicated
in Figure 1, two Lorentzians were clearly needed.
Focusing first on the maximum of the unresolved spike, it is

clear from the results for single-baseline CCFs and ACFs that
the amplitude is always higher than 0.6 of the maximum of the
Lorentzian, reaching 0.95, which is almost the predicted value

Figure 3. Examples of one-dimensional CCFs and ACFs of visibility amplitudes. Pulsar names, baselines, and polarization information are given in each panel.
Observed values are plotted by red lines. Dotted lines indicate the values of L(0), where tDL ( ) is the best Lorentzian fit of a broad smooth part of the measurements
obtained outside of the narrow spike at tD = 0. Green lines show the discrepancy between measured values and tDL ( ). The discrepancy was normalized by L(0) in
order to facilitate the comparison with predictions of the AMN model. For all pulsars but PSR B0833–45 (Vela), the observations are well approximated by a
Lorentzian function. For Vela, the sum of two Lorentzians was needed for the fit. Note that in the two bottom panels, the scale of the vertical axis is enlarged.
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of 1.0 for the AMN model. The situation is different for the
CCFs between data from different baselines. In all three cases,
the amplitude is lower than 0.6. In particular, for PSR
B0833–45 (Vela), the amplitude decreases to 0.05 for the
two Earth–Earth baselines and goes to zero for Earth–Earth to
Earth–space baselines.

In contrast to the unresolved spike, for the broad component
of all but PSR 0833–45 (Vela), the residuals show only very
small deviations from statistical noise, indicating the excellent
quality of the fit with one Lorentzian. For the broad component
of B0833–45 (Vela), where two Lorentzians were needed, the
residuals are somewhat larger but still indicate a good fit.

3.4. Parameter Estimates

For all of the pulsars apart from PSR B0833–45 (Vela), the
results are given in Table 3. For each of the four pulsars, we list
the correlated baselines as a function of increasing projected
baseline length together with the corresponding interferometric
angular resolution, qres, in units of the angular scattering angle,
qsc, and w, the HWHM of the Lorentzian fits. A scattering disk
is resolved when q q < 1res sc .

The formal uncertainty of our estimated values for w for a
single scan is about 1%–3%, while the peak-to-peak variation
between successive scans is about 10%, which reflects the
variation due to scintillation. The values of w are averages over
the whole observing time of about 1 to a few hr and have to be

considered as obtained in the average mode of observation.
There is a hint that for all pulsars but PSR B0329+54, w is
decreasing with increasing baseline projection, while the
scattering disk becomes more and more resolved by the beam
of the two-element interferometer. Such behavior was predicted
theoretically by Gwinn et al. (1998).
The anomalous dependence of w on baseline projection, b∣ ∣,

for PSR B0329+54 can perhaps be explained by rapid changes
in the properties of the scattering screen that mask the effect of
the variable baseline. Observations of the pulsar by Bhat et al.
(1999; Figure 4) show that at 327 MHz, the decorrelation
bandwidth may change by a factor of 2 over 1 or 2 days.
It is also possible that the weak dependence of w on baseline

projection for PSR B0329+54 is a consequence of the fact that
the ratio qres/qsc is smaller than unity and also much lower than
for other pulsars. It appears that w decreases with increasing
baseline projection as long as the scattering disk is resolved,
and w loses its dependence on baseline projection and becomes
constant. In this context, it is interesting to note that such
behavior was indeed found for the second moment of visibility
by Gwinn et al. (1998). It remains to be seen whether a similar
behavior can also be derived for w.
The visibility characteristics of PSR B0833–45 (Vela) are

more complex; therefore, we give our results separately in
Table 4. The pulsar was observed three times between 2012
and 2013, and, as in Table 3, we list the sessions and dates
together with the baselines, polarization, and projected baseline
lengths in order of increasing length, as well as the angular
resolution in units of the scattering angle. For observing dates
2012 May 10 and 2013 December 15, we needed two
Lorentzians to fit the cross sections of the CCFs and ACFs
with an HWHM, w1 and w2, of about 4–8 μs for the short
timescale and 15–25 μs for the long timescale, respectively. In
contrast, for the observing date of 2012 May 18, which is about
one orbit after the date of 2012 May 10, one Lorentzian was
sufficient for the fit. This change is particular striking for the
baseline MP-HO with the same projected baseline length and
position angle but for 8 days apart. We list the values for w1

and w2, together with the values for the amplitudes of the
Lorentzians and the position angles of the baselines, in Table 4.
In contrast to B0823+26, B0834+06, and B1933+16, there is
no decrease of either w1 or w2 with increasing projected
baseline length. Further, there is also no apparent dependence
of the amplitude on the baseline position angle.
We now focus on the correlation of the SN between different

baseline projections in more detail. In particular, we compare
the height of the unresolved spike at zero delay lag in
Figures 3(d), (g), and (h). The correlation of SN between short
baselines as in Figure 3(f) with projected baseline lengths of
2.5 and 6.0 Mλ is relatively high. The correlation decreases
significantly between short and intermediately long baselines
with lengths of 5.8–7.5 and 54 Mλ as in Figure 3(h) and
completely vanishes between short and long (Earth–space)
baselines of 5.8–7.5 and 630Mλ as in Figure 3(g). These
characteristics appear to be related to the size of a diffraction
spot, rdif , in the scattering screen relative to the difference of
the projected lengths of the pair of the correlated baselines,

-BA B and -BC D. If r<-BA B dif and r<-BC D dif , then the two
interferometers observe the same diffraction spot with about the
same angular resolution, and consequently, for SN, the
correlation is relatively high. If r<-BA B dif and r~-BC D dif ,
the correlation decreases. In the extreme case, r<-BA B dif and

Table 3
Results of the Lorentzian Fits for Four Pulsars

PSR Corr. Baselines Function Length qres/qsc w
( lM ) (μs)

(1) (2) (3) (4) (5) (6)

B0329+54 RA-GB CCFLR 65 0.66 8.0(1)
RA-GB CCFLR 98 0.44 8.3(2)
RA-GB CCFLR 190 0.23 8.4(1)
RA-GB CCFLR 235 0.18 8.5(1)

B0823+26 GB-WB CCFLR 6.5 17 1.48(8)
RA-GB CCFLR 51 2.2 0.56(6)
RA-GB CCFLR 55 2.0 0.74(7)
RA-GB CCFLR 61 1.8 0.87(9)

B0834+06 AR-GB CCFLR 2.5 66 1.6(1)
AR-WB CCFLR 6.0 28 1.5(1)
GB-WB CCFLR 6.0 28 1.5(1)
RA-AR CCFLR 165 2.0 1.3(1)
RA-GB CCFLR 165 2.0 1.3(2)

B1933+16 AR-TR ACFR 36 5.7 1.7(1)
AR-SV ACFR 36 5.7 1.8(1)
(AR-

TR)×(AR-SV)
CCFRR 36 5.7 1.8(2)

RA-AR ACFR 34–164 6.0–1.2 1.5(2)

Note. Columns are as follows: (1) pulsar name; (2) two-element interferometer
with stations as in Table 2; (3) the function analyzed, with

t= D-CCF CCFLR
A B
LR ( ), t= D-ACF ACFR

A B
R ( ), and

t= D- ´ -CCF CCFRR
A B C D

R ( )( ) ( ) , with stations, A, B, C, D, as defined in
Section 2; (4) length of projected baseline in millions of wavelengths, lM ; (5)
interferometer angular resolution given by projected baseline length from
column (4) in units of the angular scattering angle, qsc; and (6) HWHM of a
Lorentzian fit to the function analyzed, where the number in parentheses is the
approximate error (1σ) in the last digit of w computed from the rms variation
and the number of scans during the observation time, Ttot, assuming Gaussian
statistics.
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r>-BC D dif , the correlation completely vanishes, since the two
interferometers observe different diffraction spots.

4. Numerical Simulation of Scattering

Our analysis of the CCFs and ACFs has shown that for the
set of our pulsars, a single Lorentzian was sufficient for the fit,
except for B0833–45 (Vela), for which in many cases the sum
of two Lorentzians was needed. Through a numerical
simulation, we show that the difference can be interpreted in
terms of circularly and noncircularly symmetric scattering of
the radio radiation in the inhomogeneities of the scattering
screen.

We consider the probability distribution in delay for
scattered rays refracted on a thin screen. For the small angle
approximation, the geometric time delay, τ, is given as a
function of the scattering angle, θ, as t q= d c22

eff ( ), where
= -d Dd D deff ( ), with D and d as distances to the pulsar

and the screen, respectively (Gwinn et al. 1993). Let the screen
contain n refractors with coordinates xi,yi (  i n1 ), selected
from a two-dimensional Gaussian distribution with standard
deviations corresponding to major and minor axes equal to s x

2

and sy
2, respectively. We compute the mutual geometrical

delays between each of the rays as t q q= -ij i j
2 2 with -n n 1( )

combinations. Since q rµ = +x y2 2 2 2, we compute the
delays as t r r= -ij i j

2 2. In order to achieve a smooth
distribution, we assume n=100, and we average 100
simulations.
In Figure 1(c), we show the distribution of computed delays

for a circular (s s=x y) scattering disk, and in Figure 1(d), we
show them for an elliptical scattering disk (s s= 3y x). For the
circular disk, the distribution is well fit by a single Lorentzian,
whereas for the elliptical disk, the sum of two Lorentzians is
needed. The distributions shown in Figures 1(c) and (d) reflect
the shape of the average visibility function in delay. As
explained in the Appendix, the ACF of a Lorentzian is also a
Lorentzian, with an HWHM twice as large as that of the
original Lorentzian. Similarly, for our cases, the CCFs of the
Lorentzians we consider are also, at least approximately,
Lorentzians, although that is harder to show, as explained in the
Appendix. Despite the simplicity of our model, we found a
good correspondence between the simulated distributions and
the SVEs of the CCFs and ACFs obtained in our analysis of the
substructure of visibility functions for pulsars. Our analysis is
valid for an interferometer with a short baseline when a

Table 4
Results of the Lorentzian Fits for PSR B0833–45 (Vela)

Session Corr. Baselines Function Length qres/qsc w1 w2 A1 A2 Position Angle
( lM ) (μs) (μs) (deg)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

RAES07a MP-PA ACFL 1.0 30 4.2(2) 15.5(4) 0.05 0.14 50
2012 May 10 TB-PA ACFL 1.5 20 5.7(6) 21.9(8) 0.12 0.31 11

TB-HO ACFL 4.4 7.0 4.1(3) 16.5(8) 0.05 0.16 36
PA-HO ACFL 5.8 5.2 5.0(2) 16.6(7) 0.0011 0.0012 30
MP-HO ACFL 6.7 4.6 5.6(2) 18.0(2) 0.006 0.007 33
TB-RA ACFL 725 0.04 12.0(4) 0.035 166
(TB-PA)×(MP-HO) CCFLL 1.5, 6.7 5.9(2) 17.2(5) 0.024 0.035
(TB-PA)×(MP-PA) CCFLL 1.5, 1.0 5.9(1) 19.2(5) 0.089 0.187
(TB-PA)×(MP-TB) CCFLL 1.5, 2.4 6.3(2) 23.2(6) 0.14 0.32
(TB-RA)×(MP-TB) CCFLL 725, 2.4 6.4(2) 17.4(4) 0.032 0.090

RAES07b AT-MP CCFLR 0.5 61 17.1(4) 0.32 45
2012 May 18 PA-MP CCFLR 1.0 30 18.0(4) 0.39 50

PA-AT CCFLR 1.5 20 20.5(5) 0.44 45
PA-HO CCFLR 5.8 5.2 13.8(4) 0.14 30
MP-HO CCFLR 6.7 4.6 11.4(4) 0.004 33
AT-HO CCFLR 7.3 4.3 12.4(3) 0.08 33
AT-HH CCFLR 52.2 0.58 19.6(5) 0.04 90
AT-RA CCFLR 1065 0.03 14.0(3) 0.017 166
(PA-AT)×(AT-MP) CCFRR 1.5, 0.5 18.8(4) 0.39
(AT-HH)×(PA-HH) CCFRR 52.2, 52.2 20.1(5) 0.43

RAKS02as AT-CD CCFLR 5.8–7.5 5.2–4.1 5.0(2) 15.9(3) 0.22 0.30 112–150
2013 Dec 15 AT-HO CCFLR 6.6–7.3 4.6–4.3 4.4(1) 19.7(3) 0.14 0.28 33-46

AT-HH CCFLR 54 0.55 7.8(1) 22.0(4) 0.15 0.26 80–92
AT-RA CCFLR 630 0.05 8.6(2) 25.0(4) 0.08 0.06 130
(AT-CD)×(HO-CD) CCFRR 5.8–7.5, 9.3 1.1(1) 10.0(2) 0.03 0.05
(AT-CD)×(AT-HO) CCFRR 5.8–7.5, 6.6–7.3 3.3(1) 17.4(3) 0.20 0.10
(AT-CD)×(AT-RA) CCFRR 5.8–7.5, 630 6.0(2) 17.9(3) 0.06 0.09
(AT-CD)×(AT-HH) CCFRR 5.8–7.5, 54 6.6(2) 19.3(4) 0.11 0.17
(AT-HH)×(AT-RA) CCFRR 54, 630 7.3(2) 18.3(4) 0.07 0.10

Note. Columns are as follows: (1) session code and date; (2) designation of baseline or baseline combination; (3) function analyzed (for definition, see Table 3); (4)
length of baseline projection in millions of wavelengths, lM ; (5) interferometer angular resolution given by projected baseline length from column (4) in units of the
angular scattering angle, qsc; (6) and (7) HWHM of a Lorentzian fit of the function in column (3), where in the majority of cases, a sum of two Lorentzians with
HWHM w1 for the narrow Lorentzian and HWHM w2 for the broad Lorentzian was needed to fit the shape of the SVE, and errors in parentheses are defined as in
Table 3; (8) and (9) amplitudes corresponding to Lorentzians with w1 and w2, respectively; (10) position angle of baseline projection in degrees.
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scattering disk is not resolved. The scale of the time delay in
the bottom panels of Figure 1 is arbitrary; it depends on the
values of the distance to the pulsar D, the distance to the screen
d, and the scattering angle θ.

5. Discussion

The main result of our analysis is that Lorentzians fit the
SVE in our CCFs and ACFs—therefore, in general, the
envelope of the two-element interferometer delay visibility
functions very well—and numerical simulations of scattering
confirm that Lorentzians are indeed expected. Isotropic
scattering in the plane of the sky results in a single Lorentzian
for the SVE of the CCFs and ACFs with an HWHM twice as
large as tsc, whereas anisotropic scattering with the scattering
disk being elliptical results in two Lorentzians with different
HWHMs. In fact, since we found that Lorentzians can be fit for
all five pulsars with a variety of pulsar parameters, it is likely
that this is a general characteristic of all pulsars that the delay
visibility functions can be described by one or possibly more
Lorentzians, depending on the complexity of the scattering
medium. Our pulsars B0329+54, B0823+26, B0834+06, and
B1933+16 are all undergoing isotropic scattering. Their
galactic coordinates and the relative distances of their scattering
screens (see Table 1) indicate that, for the first three pulsars, the
screens are approximately associated with the Local Arm in our
Galaxy, and, for B1933+16, they are associated with the
Carina Sagittarius Arm (see also Popov et al. 2017; Fadeev
et al. 2018). Despite the large range of their distances, D;
dispersion measures, DM; scintillation times, tscint; scattering
times, tsc; scattering angles, qsc; and decorrelation bandwidths,
Dfdif , no dependence on any of these parameters can be found
in the quality of the fit apart from only slight differences in the
small deviations from a noise-like distribution of the residuals.

In contrast, PSR B0833–45 (Vela) shows more complex
behavior. Only one set of our data can be satisfactorily fitted
with a single Lorentzian, while a data set taken 8 days earlier
and another data set taken 7 months later require a sum of two
Lorentzian functions with different widths, w1 and w2.

It is particularly striking that for the same baseline, MP-HO,
with the same projected length and position angle, on 2012
May 10, two Lorentzians are needed for the fit, and on 2012
May 18, only one Lorentzian is needed. Apparently, the
scattering conditions for this pulsar changed drastically over a
time span as short as 1 week. Anisotropic scattering, indicated
by the two Lorentzians, changed to isotropic scattering,
indicated by the one Lorentzian, and then back to anisotropic
scattering.

Earlier, Popov et al. (2019) had already found evidence of
anisotropic scattering for this pulsar by comparing the
dependence of visibility amplitude on baseline projection at
different baseline position angles. Our method described in this
paper is largely independent of that method and has advantages
with respect to higher signal-to-noise ratios and more robust
estimates of scattering characteristics.

That properties of an intervening medium on the line of sight
to PSR B0833–55 (Vela) differ qualitatively from properties of
such media for the other four pulsars can be understood
because of the peculiarities of PSR B0833–55 (Vela). The Vela
pulsar has the largest mean free electron density along the line
of sight; the smallest values of tscint and, together with B0329
+54, Dfdif ; and the largest values of tsc and qsc. The pulsar is

the only one of our sample that is still within a visible
supernova remnant.
Popov et al. (2019) argued on the basis of the determination

of the scattering medium position that scintillations of PSR
B0833–55 (Vela) originate at least partly within the supernova
remnant. The regions responsible for the scattering there differ
significantly from the standard model of a thin screen. In
particular, the line of sight is likely to be nearly tangent to the
scattering sheets, which are expected to be highly turbulent and
rapidly moving. It is therefore conceivable that the scattering
screen parameters are highly variable, even on such a short
timescale of 1 week. In this model, the anisotropic indicatrix
and rapid variability of the scattering screen parameters are
produced naturally.

6. Conclusions

We present an analysis of two-element interferometry data
with Earth–Earth and Earth–space baselines for five pulsars:
B0329+54, B0823+26, B0834+06, B1933+16, and
B0833–45 (Vela), the latter still embedded in its supernova
remnant. The cross-correlation and ACFs of the interferometer
dynamic visibility functions in delay and time consist of a
band-limited unresolved spike at zero delay lag in Δτ and zero
time lag in Δt, interpreted as being due to SN and a smooth
SVE. The amplitude of the SN spike above the SVE is between
0.6 and 0.95 times the amplitude of the SVE, which is
reminiscent of the AMN model for pulsar microstructure. The
amplitude of the SN spike decreases with Δt on a timescale
corresponding to the scintillation time, tscint. The SN for
baseline projections smaller than the size of the diffraction spot,
rdif , is uncorrelated with the SN for baseline projections larger
than rdif . The SVEs in delay lag, supported by numerical
simulations, show that they are well approximated by one or
more Lorentzian functions. For all pulsars but B0833–45
(Vela), only a single Lorentzian was needed for the fit,
indicating isotropic scattering by a thin screen. For B0833–45
(Vela), usually at least two Lorentzians with variable widths
were needed for the fit, indicating anisotropic scattering, likely
in the shell of the supernova remnant and/or the Gum Nebula,
with scattering conditions variable on a timescale of 1 week
or less.
It is likely that the SVEs of all pulsars can be described by

one or more Lorentzians, depending on the complexity of the
intermittent scattering material of the ISM, and that fit
Lorentzians are a new and more robust way to describe some
scattering properties.

The RadioAstron project is led by the Astro Space Center of
the Lebedev Physical Institute of the Russian Academy of
Sciences and the Lavochkin Scientific and Production
Association under a contract with the Russian Federal Space
Agency, in collaboration with partner organizations in Russia
and other countries. This paper was supported in part by the
Russian Academy of Science Program KP19-270, “The study
of the Universe origin and evolution using the methods of
Earth-based observations and space research.”
Facilities: RadioAstron Space Radio Telescope (Spektr-R),

GBT, WSRT, ATCA, Parkes, Ceduna, Mopra.
Software:CFITSIO.
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Appendix
Scattering Time Expressed through the Scale Parameter of

a Lorentzian Fit of a Correlation Function

In this Appendix we obtain the equation t = w 2sc used in
Section 3.2. The derivation is based on the assumption that the
observed intrapulse variations of fringe visibility magnitude
can be described by the AMN model developed by Rickett
(1975). In order to make the relationship with the AMN model
clear, the notations chosen here are close to those used in the
cited paper. In particular, for a fixed baseline A–B and
polarization P ( =P L or =P R), we designate
t t= -I VA B

P( ) ∣ ( )∣. The functions tD-ACF A B
P ( ), introduced in

Section 2 may be expressed as t tD = á D ñ- RACF A B
P

I( ) ( ) ,
where á ñ denotes the ensemble average, and the operator, R,
acting on a random process tz ( ), is defined by

òt t t t tD = + DR z z d , 2z ( ) ( ) ( ) ( )

with integration performed over the total duration of the pulse.
Further, we decompose the observed variability of the visibility
magnitude as t t t=I a I2

1( ) ( ) ( ). Here, ta2 ( ) is a deterministic,
slowly varying function that reflects the time dependence of

tá ñI ( ) . The factor tI1( ) is a stationary random process
describing the SN that originates in the scattering matter. The
timescale of SN variations is much smaller than the timescale
of variations of the modulating function.

If we additionally assume that there exists such a stationary
complex Gaussian random process, tx ( ), that

t t»I x , 31
2( ) ∣ ( )∣ ( )

then the AMN model is directly applicable to our problem. The
important consequence of the model is that

t t tá D ñ = D + DR R RI I I
b c( ) ( ) ( ). Here the term RI

b is the broad
component that varies slowly over the whole range of tD , and
the term RI

c represents the narrow central spike with

t tD µ DR R , 4I a
b

2( ) ( ) ( )

=R R0 0 . 5I I
c b( ) ( ) ( )

The values R 0I
c( ) and R 0I

b( ) can be easily measured
observationally. If Equation (5) is satisfied with sufficient
precision, then it is likely that the AMN model is applicable,
Equation (4) also holds, and the determination of the
modulating function, tDa2 ( ), reduces to the problem of
finding a function with the given autocorrelation.

For CCFs, it is difficult, if possible at all, to find a complete
analog to the function tI ( ). Thus, the line of reasoning based

on direct use of the results of Rickett (1975) is not applicable.
But the overall similarity of the mathematics encountered in
considering both the ACFs and CCFs (in all cases, we analyze
mixed fourth moments of the incident field) makes it likely that
if Equation (5) is satisfied with sufficient precision, then
Equation (4) can be used to determine the form of the
modulating function.
In finding tDa2 ( ), we use for the broad component tDRI

b( )
of the measured function tá D ñRI ( ) the approximation

t tD = DR L w C, , , 6I
b( ) ( ) ( )

where t tD = D + +L w C rw w C, , 2 2( ) ( ) . We assume that
the constant offset, C, is caused only by errors in the
determination of baselines of the individual visibility magni-
tudes, that is, C=0 in Equation (6). Using the identity

t= DtDR rpL y, 2 , 0L y, ,0 ( )( ) , where the operator, R, is defined
in Equation (2), we obtain from Equation (4) that t = w 2sc ,
where the scattering time, tsc, is defined as the HWHM
of tDa2 ( ).
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