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ABSTRACT

The Crab pulsar has striking radio emission properties, with the two dominant pulse components – the

main pulse and the interpulse – consisting entirely of giant pulses. The emission is scattered in both

the Crab nebula and the interstellar medium, causing multi-path propagation and thus scintillation.

We study the scintillation of the Crab’s giant pulses using phased Westerbork data at 1668 MHz. From

correlations of the giant pulse spectra, we find that the main pulse and the interpulse are significantly

offset in time and frequency. This suggests that they arise in physically distinct regions, which are,

assuming the scattering takes place in the nebular filaments, separated by about a light cylinder

radius (as projected on the sky). With further VLBI and multi-frequency data, it should be possible

to measure both the distance to the scattering screens and the physical separation between the pulse

components.

1. THE UNUSUAL PROPERTIES OF THE CRAB

PULSAR

The Crab pulsar is one of the most unusual radio pul-

sars, and has been the subject of much observational

and theoretical research (for a review, see Eilek & Han-

kins 2016). The two dominant components to its ra-

dio pulse profile, the main pulse and the low-frequency

interpulse (simply referred to as the interpulse for the
remainder of this paper), appear to be comprised en-

tirely of randomly occurring giant pulses – extremely

short and bright pulses of radio emission showing struc-

ture down to ns timescales and reaching intensities over

a MJy (Hankins & Eilek 2007). Only the fainter com-

ponents of the pulse profile – such as the precursor (to

the main pulse) – are similar to what is seen for regular

radio pulsars.

The main pulse and interpulse are aligned within 2 ms

with X-ray and γ-ray components (Moffett & Hankins

1996; Abdo et al. 2010). Since pair production strongly

absorbs γ-ray photons inside the magnetosphere, this

suggests both components arise far from the neutron-

star surface, with possible emission regions being the

various magnetospheric “gaps” (Romani & Yadigaroglu

1995; Muslimov & Harding 2004; Qiao et al. 2004; Is-

tomin 2004) or regions outside the light cylinder (Philip-

pov et al. 2015). While similar in their overall proper-

ties, the main pulse and interpulse have differences in

detail. In particular, the interpulse has a large scatter

in its dispersion measure compared to the main pulse,

possibly suggesting that it is observed through a larger

fraction of the magnetosphere (Eilek & Hankins 2016).

In addition, it appears shifted in phase and shows “band-

ing” in its power spectra above 4 GHz, with spacing pro-

portional to frequency (Hankins & Eilek 2007).

The Crab pulsar, like many pulsars, exhibits scintil-

lation from multi-path propagation of its radio emis-

sion. The scattering appears to include both a relatively

steady component, arising in the interstellar medium,

and a highly variable one, originating in the the Crab

nebula itself, with the former responsible for the an-

gular and the latter for (most of) the temporal broad-

ening (Rankin & Counselman 1973; Vandenberg 1976;

Popov et al. 2017; Rudnitskii et al. 2017). The prox-

imity of the nebular scattering screen to the pulsar

implies that, as seen from the pulsar, the screen ex-

tends a much larger angle than would be the case if

it were far away (for a given scattering time). There-

fore, the scintillation pattern is sensitive to small spa-

tial scales, of order∼2000 km at our observing frequency

(see Sect. 4.1), comparable to the light-cylinder radius

rLC ≡ cP/2π ' 1600 km.

The high spatial resolving power also implies that,
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for given relative velocity between the pulsar and the

screen, the scintillation timescale is short. Indeed, from

the scintillation properties of giant pulses, Cordes et al.

(2004) infer a de-correlation time of ∼ 25 s at 1.4 GHz.

Karuppusamy et al. (2010) compare the scintillation of

pulses within a single pulse rotation, finding that main

pulses weakly correlate with interpulses. In this paper,

we compare the scintillation structure of the main pulse

and the interpulse in more detail. We find that there

are significant differences, which indicate that, as pro-

jected on the sky, the locations at which their emission

originate differ on the scale of the light cylinder.

2. OBSERVATIONS AND DATA REDUCTION

We analyse 6 hours of phased Westerbork data that

were taken as part of a RadioAstron observing run on

2015, January 10–11 (Popov et al. 2017). The data

cover the frequency range of 1652–1684 MHz, consisting

of both circular polarizations in two contiguous 16 MHz

channels, recorded using standard 2-bit Mark 5B for-

mat. A large phased array like Westerbork is particu-

larly beneficial in studies of the Crab pulsar, as it helps

to resolve out the Crab nebula, effectively reducing the

system temperature from 830 Jy (for the integrated flux

at 1.7 GHz) to 165 Jy (Popov et al. 2017).

To search for giant pulses, we coherently dedispersed1

the data from the two channels to a common reference

frequency, and summed the power from both channels

and both polarizations in 8µs bins. We flagged peaks

above 6σ, corresponding to ∼45 Jy, as giant pulses, find-

ing in 29332 events, i.e., a rate of ∼1.6 s−1. We show the

detected pulses in Fig. 1, along with the folded profile.

3. SCINTILLATION PROPERTIES

With the phased Westerbork array, our pulse detec-

tion rate is sufficiently high that it becomes possible to
compute a traditional dynamic spectrum by summing

intensities as a function of time. We do this first below,

as it gives an immediate qualitative view of the scintil-

lation. A more natural choice for pulses which occur

randomly in time, however, is to parametrize variations

as a function of ∆t, the time separation between pulses

(Cordes et al. 2004; Popov et al. 2017). Hence, we con-

tinue by constructing correlation functions of the spec-

tra, as functions of both time and frequency offset.

3.1. The Dynamic Spectrum of the Main Pulse

During our observation, the scattering time in the

Crab was relatively small, smaller than the intrinsic

1 Using a dispersion measure of 56.7716 pc cm−3 appropriate for
our date (taken from http://www.jb.man.ac.uk/~pulsar/crab.
html; Lyne et al. 1993). We took care to read sufficient extra data
to avoid de-dedispersion wrap-around.

duration of the pulses, such that we can resolve scin-

tillation patterns in frequency. We can thus construct

the dynamic spectrum I(t, ν) by simply summing giant

pulse spectra, normalizing each time bin by the total flux

within that bin. While there will still be structure in the

dynamic spectrum owing to the intrinsic time structure

of the giant pulses (Cordes et al. 2004), any features in

frequency which correlate in time should only be associ-

ated with scintillation. We show a 20 minute segment of

the dynamic spectrum in Figure 2. While noisy, the dy-

namic spectrum shows scintillation features. They are

resolved by our time and frequency bin sizes of 4 s and

250 kHz, respectively, but only by a few bins, suggesting

that the scintillation timescale and bandwidth are larger

than our bin sizes by a factor of a few.

3.2. Correlation Functions

The correlation function between two spectral inten-

sity streams I1(t, ν) and I2(t, ν) can be written as,

R(∆t,∆ν) =
〈(I1(t, ν)− µ1)(I2(t+ ∆t, ν + ∆ν)− µ2)〉

σ1σ2
,

(1)

where ∆t and ∆ν are offsets in time and frequency, µ1

and µ2 are averages of I1 and I2 over time and frequency,

and σ1 and σ2 estimates of the standard deviation.

To infer the scintillation bandwidth and timescale, one

usually uses the auto-correlation of the dynamic spec-

trum, but for pulses randomly spaced in time, it is eas-

ier to calculate covariances for pulse pairs and then bin

by time separation ∆t (Cordes et al. 2004). To do this,

we begin by selecting only pulses above 16σ – which

implies that they have a signal-to-noise ratio of & 1 in

each 125 kHz channel. We then correlate each pulse pair,

taking care to account for the contributions of noise to

variance in the spectra (see Appendix A), giving an es-

timate of R(∆t,∆ν) for a single value of ∆t, the time

separation of the pulses. We then sum these correlated

spectra in equally spaced bins of ∆t to construct our

average correlation function. In Fig. 3, we show the re-

sult, both for correlations between main pulse pairs and

for correlations between main pulse and interpulse pairs

(there are insufficient giant pulses associated with the

interpulse to calculate a meaningful correlation function

from those).

The main pulse spectra decorrelate on a scale of

∆ν = 1.18 ± 0.01 MHz in frequency, and on a scale of

τ = 9.0 ± 0.1 s in time.2 The time scale is somewhat

shorter than the value of 25±5 s found at 1.475 MHz by

Cordes et al. (2004), even accounting for the difference in

2 We adopt the usual convention, defining ∆ν and τ as the
values where the correlation function drops to 1/2 and 1/e re-
spectively.

http://www.jb.man.ac.uk/~pulsar/crab.html
http://www.jb.man.ac.uk/~pulsar/crab.html
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Figure 1. Top: Average pulse profile across our observation, derived by folding the dedispersed data in 128 phase bins. Middle
panels: Flux density of all giant pulses detected around the main pulse and the interpulse, as measured in the 8µs bins used
to search for them. Note that since the giant pulses arrive only sporadically, the folded profile has far lower flux than the giant
pulses. The dips around the main and interpulse in the folded profile are an artefact from the 2-bit digitization. Bottom Panels:
Pulse profiles of the two brightest main pulses (left) and interpulses (right) in 250 ns bins. Note the large intrinsic differences
between pulse profiles.

frequency (for τ ∝ ν−4, our measurement corresponds to

5.7±0.1 s at 1.475 GHz). Differences are expected for ob-

servations at different epochs, however, as the scattering

in the nebula is highly variable (Rankin & Counselman

1973; Lyne & Thorne 1975; Isaacman & Rankin 1977;

Rudnitskii et al. 2017, and sometimes showing “echoes”,

e.g., Backer et al. 2000; Lyne et al. 2001).

Attention should be paid to intrinsic time structure of

individual giant pulses and its influence on the scintilla-

tion spectra. It was shown that such influence decreases

when giant pulse spectra in different polarization chan-

nels are correlated (Kondratiev et al. 2007). However,

such influence in this case is not completely excluded;

the shot noise structure of giant pulses which results

in the intrinsic fine frequency structure is correlated

between different polarizations (e.g. Eilek & Hankins

2016). This appears to be why the decorrelation band-

width obtained in this paper significantly differs from

what was calculated in Popov et al. (2017) for the same

dataset, who auto-correlate giant pulse spectra between
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Figure 2. Part of the dynamic spectrum inferred from the main pulse by summing individual giant pulse spectra at 250 kHz
resolution in 4 s bins. The total flux in each time bin was normalized to remove the effects of variable pulse brightness (which
otherwise would dominate the spectrum). The random occurrence of giant pulses and their variable flux means that the noise
properties of the time bins are heterogeneous, and that some bins have no flux.

their left and right circular polarizations. If we adopt

the cutoff of SN > 22 as in Popov et al. (2017), correlate

left and right circular polarizations and fit a single expo-

nential, then we measure ∆ν = 0.42 MHz, closer to their

value. However, a two-exponential fit is a better fit to

the data, giving two distinct scales of ∆ν1 = 0.98 MHz,

∆ν2 = 0.16 MHz; the above explanation is consistent

with our results if the small bandwidth ∆ν is caused by

intrinsic pulse structure, and the wide bandwidth ∆ν is

the scintillation bandwidth.

In Fig. 3, one sees that the main pulse to interpulse

correlation function is different from the main-pulse au-

tocorrelation, being offset in time and frequency by

about −3 s and −0.5 MHz, respectively, and having a

lower maximum correlation. To quantify the significance

of these differences, we use simulated cross-correlations.

For these, since we have many more giant pulses dur-

ing the main pulse than the interpulse, we simply take

528 random main pulses (the number of interpulses

above 16σ) and correlate these with the other 6401 main

pulses. We repeat this 10000 times, and fit each subset

with a 2D Gaussian, allowing for offsets in time and fre-

quency ∆t0 and ∆ν0. Comparing these with the value

fit to the interpulse to main-pulse correlations (see side

panels in Fig. 3), the differences are significant: none of

the simulated data sets have larger ∆t0 or ∆ν0, or as

small an amplitude.

The reduced amplitude makes it somewhat difficult

to estimate uncertainties on time and frequency offsets.

We estimate them by scaling the standard deviations

from the simulations by the ratio of the main simulated

amplitude to the observed one, yielding ∆t0 = −3.0 ±
0.5 s and ∆ν0 = −0.52± 0.06 MHz.

4. RAMIFICATIONS

4.1. Spatial Resolution of Scattering Screen

The size and location of the scattering screen is not

precisely known, but a model in which the temporal

scattering occurs in the Crab nebula is favored by VLBI

measurements showing the visibility amplitude is con-

stant through the scattering tail (Vandenberg et al.

1976) as well as the short scintillation timescale (Cordes

et al. 2004). The geometric time delay is

τ =
θ2deff

2c
with deff =

dpsrdscr

dpsr − dscr
, (2)

where θ is the angle the screen extends to as seen from

Earth, and dpsr an dscr are the distances to the pul-

sar and the screen, respectively. The scattering screen

can be seen as a lens, with physical size D = θdscr and

corresponding angular resolution λ/D, giving a physical

resolution at the pulsar of ∆x = (dpsr−dscr)λ/θdscr, or,

in terms of the scattering time τ ,

∆x = λ

(
dpsr − dscr

2cτ

dpsr

dscr

)1/2

. (3)

Assuming the scattering is dominated by the nebula,

we have dscr ' dpsr and hence for the known scattering

time τ ' 160 ns (from τ = 1/2π∆ν,∆ν ≈ 1 MHz), the

dominant unknown is the distance between the pulsar

and the screen.

Since scattering requires relatively large differences in

(electron) density, it cannot happen inside the pulsar-

wind filled interior of the Crab nebula, which must have

very low density. For a reasonable bulk magnetic field

of 10−4 G, the emitting electrons are relativistic, with

γ ∼ 106. The radio emitting electrons have a density

of ne ≈ 10−5 cm−3 (Shklovsky 1957), implying that the

refractive index deviates from unity by a tiny amount,

∆n ≈
(
ωp

ωR

)2

∼ 10−32, (4)

where ωp = (4πe2ne/γme)
1/2 is the plasma frequency,

and ωR is the observed radio frequency.

Instead, the only plausible location for the tempo-

ral scattering is in the optically emitting filaments in

the Crab Nebula. These filaments develop due to the

Raleigh Taylor instability: as the pulsar wind pushes

on the shell material, the contact discontinuity acceler-

ates (Chevalier 1977) leading to the RT instability and

formation of filaments (Porth et al. 2014).
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Figure 3. Images: Cross-correlations R(∆t,∆ν) of pulse
dynamic spectra, between giant pulses in the main pulse
with themselves (top) and with giant pulses in the inter-
pulse (bottom). The correlation between main-pulse gi-
ant pulses is symmetric by construction (i.e., R(∆t,∆ν) =
R(−∆t,−∆ν)), but this is not the case for the correlation
between interpulse and main pulse. The offsets likely reflect
a different physical location of the main pulse and interpulse
emission regions (see section 4.1). Top and top-right: a 5-bin
wide average of main pulse (solid line) and interpulse (dashed
line) correlations through the best fit ∆t, ∆ν, respectively.
Bottom and bottom-right Panels: Comparison of the best-
fit offsets ∆t0 and ∆ν0 found by fitting a two-dimensional
Gaussian to the interpulse, main-pulse correlation function
with simulated correlation functions constructed from ran-
domly drawn sets of giant pulses from the main pulse (with
the same size as that available for the interpulse). None of
these have offsets as large as the ones observed.

With 3-dimensional models fit to spectroscopic optical

data of the Crab Nebula, Lawrence et al. (1995) find the

filaments reside in the range 0.3–0.75 pc when using a

nominal pulsar distance of 2 kpc (given the full range

of distances, 1.4 . dpsr . 2.7 kpc from Trimble 1973,

implying filaments in the range 0.2–1 pc). Assuming

dpsr − dscr ' 0.5 pc, then ∆x ' 2300 km (for the full

range of possibilities 1400 . ∆x . 3200 km). Thus, the

resolution of the scattering screen is comparable to the

light-cylinder radius of the Crab pulsar, RLC ≡ cP/2π =

1600 km.

From Fig. 3, one sees that at zero time delay the cor-

relation between interpulse and main pulse has become

quite small. This suggests that the emission locations

are separated by of order one resolution element of the

screen, or, equivalently, of order the light cylinder ra-

dius. The larger correlation at larger delay implies that

the interpulse does cross a similar position relative to

the screen about 3 s later. We could turn this into a

physical separation given a relative velocity between the

pulsar and the screen. Unfortunately, this is not known,

though we can set limits from the proper motion. The

proper motion of the Crab pulsar relative to its local

standard of rest is measured to be 12.6 ± 6.2 mas/yr

in direction 160 ± 30 deg, where the uncertainties at-

tempt to account for the uncertainty in the velocity of

its progenitor (Kaplan et al. 2008), and, therewith, of

the nebular material. At an assumed distance of 2 kpc,

the implied relative velocity of ∼ 120 km/s suggests a

projected separation between the interpulse and main

pulse emission regions of ∼360 km.

4.2. Fully Measuring the Separation

A major uncertainty in the estimate of the spatial

separation between the main pulse and the interpulse

is the geometry of the lens. From studies of the scin-

tillation in other pulsars, the scattering screens in the

interstellar medium are known to be highly anisotropic,

as demonstrated most dramatically by the VLBI obser-

vations of Brisken et al. (2010). If the same holds for
the nebular scattering screens, this implies that our res-

olution elements are similarly anisotropic. Since the ori-

entation relative to the proper motion is unknown, the

physical distance between the main and interpulse re-

gions could be either smaller or larger than our estimate

above. Since the scattering varies with time, it may be

possible to average out these effects.

Furthermore, all values relating to the scattering

screen include the uncertain distance to the Crab pulsar,

suggesting that a parallax distance would improve our

constraints. In addition, the rough location of the scat-

tering in the filaments is a physical argument, and would

be greatly improved through a direct measurement.

The distance to the screen(s) can be constrained

through VLBI and through scintillation measurements

across frequency. VLBI at space-ground baselines (Rud-

nitskii et al. 2016) or at low frequencies (Kirsten et al.,

in prep.) can help constrain the angular size of the scat-
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tering in the interstellar medium. This in turn can con-

strain the size of the nebular screen; the visibility am-

plitudes will only decrease below 1 when the scattered

image of the pulsar is not point-like to the interstellar

screen. In addition, two scattering screens will impart

two distinct scattering times only when they do not re-

solve each other (Masui et al. 2015). The transition

frequency for the two scintillation timescales to become

apparent in the spectra will give a size measurement of

the nebular screen.

Applying this same analysis across different frequen-

cies, or in times of different scattering in the nebula will

also help to quantify both the separation of the main

pulse and interpulse, and the size of the emitting regions

of both components.

We thank Judy Xu who attempted the initial 1D cor-

relation function of giant pulses, and Rebecca Lin who

reproduced our results and noticed errors in early ver-

sion of this work. We made use of NASA’a Astrophysics

Data System and SOSCIP Consortiums Blue Gene/Q

computing platform.

Software: Astropy (Astropy Collaboration et al.
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REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 708,

1254

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al.

2013, A&A, 558, A33

Backer, D. C., Wong, T., & Valanju, J. 2000, ApJ, 543, 740

Bhat, N. D. R., Cordes, J. M., & Chatterjee, S. 2003, ApJ, 584,

782

Brisken, W. F., Macquart, J.-P., Gao, J. J., et al. 2010, ApJ,

708, 232

Chevalier, R. A. 1977, ARA&A, 15, 175

Cordes, J. M., Bhat, N. D. R., Hankins, T. H., McLaughlin,

M. A., & Kern, J. 2004, ApJ, 612, 375

Eilek, J. A., & Hankins, T. H. 2016, Journal of Plasma Physics,

82, 635820302

Gelfand, J. D., Slane, P. O., & Zhang, W. 2009, ApJ, 703, 2051

Hankins, T. H., & Eilek, J. A. 2007, ApJ, 670, 693

Isaacman, R., & Rankin, J. M. 1977, ApJ, 214, 214

Istomin, Y. N. 2004, in IAU Symposium, Vol. 218, Young

Neutron Stars and Their Environments, ed. F. Camilo &

B. M. Gaensler, 369

Kaplan, D. L., Chatterjee, S., Gaensler, B. M., & Anderson, J.

2008, ApJ, 677, 1201

Karuppusamy, R., Stappers, B. W., & van Straten, W. 2010,

A&A, 515, A36

Kondratiev, V. I., Popov, M. V., Soglasnov, V. A., et al. 2007,

Astronomical and Astrophysical Transactions, 26, 585

Kuzmin, A., Losovsky, B. Y., Jordan, C. A., & Smith, F. G.

2008, A&A, 483, 13

Lawrence, S. S., MacAlpine, G. M., Uomoto, A., et al. 1995, AJ,

109, 2635

Lyne, A. G., Pritchard, R. S., & Graham-Smith, F. 1993,

MNRAS, 265, 1003

—. 2001, MNRAS, 321, 67

Lyne, A. G., & Thorne, D. J. 1975, MNRAS, 172, 97

Lyutikov, M. 2007, MNRAS, 381, 1190
Main, R., van Kerkwijk, M., Pen, U.-L., Mahajan, N., &

Vanderlinde, K. 2017, ApJL, 840, L15

Masui, K., Lin, H.-H., Sievers, J., et al. 2015, Nature, 528, 523
Moffett, D. A., & Hankins, T. H. 1996, ApJ, 468, 779

Muslimov, A. G., & Harding, A. K. 2004, ApJ, 606, 1143

Pen, U.-L., Macquart, J.-P., Deller, A. T., & Brisken, W. 2014,
MNRAS, 440, L36

Philippov, A. A., Cerutti, B., Tchekhovskoy, A., & Spitkovsky,

A. 2015, ApJL, 815, L19
Popov, M. V., Rudnitskii, A. G., & Soglasnov, V. A. 2017,

Astronomy Reports, 61, 178

Popov, M. V., & Stappers, B. 2007, A&A, 470, 1003

Porth, O., Komissarov, S. S., & Keppens, R. 2014, MNRAS, 443,
547

Qiao, G. J., Lee, K. J., Wang, H. G., Xu, R. X., & Han, J. L.

2004, ApJL, 606, L49
Rankin, J. M., & Counselman, III, C. C. 1973, ApJ, 181, 875

Romani, R. W., & Yadigaroglu, I.-A. 1995, ApJ, 438, 314

Rudnitskii, A. G., Karuppusamy, R., Popov, M. V., &
Soglasnov, V. A. 2016, Astronomy Reports, 60, 211

Rudnitskii, A. G., Popov, M. V., & Soglasnov, V. A. 2017,

Astronomy Reports, 61, 393
Shklovsky, I. S. 1957, in IAU Symposium, Vol. 4, Radio

astronomy, ed. H. C. van de Hulst, 201

Slane, P. 2017, ArXiv e-prints, arXiv:1703.09311
Trimble, V. 1973, PASP, 85, 579

Vandenberg, N. R. 1976, ApJ, 209, 578
Vandenberg, N. R., Clark, T. A., Erickson, W. C., Resch, G. M.,

& Broderick, J. J. 1976, ApJ, 207, 937

Weatherall, J. C. 1998, ApJ, 506, 341
Zhuravlev, V. I., Popov, M. V., Kondrat’ev, V. I., et al. 2011,

Astronomy Reports, 55, 724

APPENDIX

A. CORRECTING NOISE BIASES IN THE CORRELATION COEFFICIENT

The correlation coefficient between two pulse intensity spectra I1,2(ν) can be generally defined as,

R(I1(ν), I2(ν)) =
〈(I1(ν)− µ1)(I2(ν)− µ2)〉

σ1σ2
, (A1)

where 〈. . . 〉 indicates an average over frequency, and µ and σ are measures of the average and variations around it,

respectively. Typically, one chooses µP = 〈IP (ν)〉 and σP = sP ≡ 〈(IP − µP )2〉1/2 so that, in the absence of noise,

R = 1 for two pulses with intrinsically identical frequency structure. In the presence of some measurement noise σn,
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one could approximate σ2
P = s2

P − σ2
n, but this holds only for normally-distributed noise, not for our case of intensity

spectra.

Here, we derive an expression valid for our case, where we wish to ensure that R = 1 for two pulses that are

sufficiently short that we can approximate them as delta functions, and that are affected by the interstellar medium

the same way, i.e., have the same impulse transfer function g(t). In that case, the measured electric field of a giant

pulse is,

EP (ν) = AP g(ν) + n(ν), (A2)

where AP is the amplitude of the pulse’s delta function in the Fourier domain, and g(ν) and n(ν) the Fourier transforms

of the impulse response function and the measurement noise, respectively. The measured intensity is then

IP (ν) = E2
P (ν) = A2

P g
2(ν) + n2(ν) + 2AP |g(ν)||n(ν)| cos(∆φ(ν)), (A3)

where ∆φ(ν) is the phase difference between n(ν) and g(ν).

The expectation value for the average is,

µP = 〈IP 〉 = A2
P 〈g2〉+ 〈n2〉, (A4)

where we have dropped the dependencies on frequency for brevity, and used that the cross term averages to zero since

〈cos(∆φ)〉 = 0. Hence, the expectation value for standard deviation is,

s2
P = A4

[
〈(g4〉 − 〈g2〉2

]
+ 〈n4〉 − 〈n2〉2 + 4A2〈g2n2 cos2(∆φ)〉, (A5)

where we have again omitted terms that average to zero. The last term does not average to zero because of the

squaring: it reduces to 2A2
P 〈g2〉〈n2〉, since g and n are independent and 〈cos2(∆φ)〉 = 1/2.

For two pulses affected by the same g(ν), and assuming that both g and n are roughly normally distributed in

their real and imaginary parts, so that g2 and n2 are distributed as χ2 distributions for 2 degrees of freedom, and

〈g4〉 = 2〈g2〉2 (and the same for n), the numerator of R becomes A2
1A

2
2〈g2〉2. Thus, for an unbiased estimate of R,

we need to estimate σP = AP 〈g2〉. We can do this by also measuring the properties of the background, which, if it is

dominated by measurement noise with the same properties as the pulse, has µB = 〈n2〉 and s2
B = 〈n4〉 + 〈n〉2 With

this, it follows that to make estimates of R free of noise bias, we should use,

σ2
P = s2

P − s2
B − 2(µP − µB)µB . (A6)

To test the above, we simulated identical giant pulses with different noise in the manner described in Main et al.

(2017). We find that using the above estimates, the correlation coefficients between these pulses indeed average to

unity when the impulse response functions are the same.


