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ABSTRACT

We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with
the RadioAstron ground-space radio interferometer. Here, we describe this phenomenon, characterize
it with averages and correlation functions, and interpret it as the result of decorrelation of the impulse-
response function of interstellar scattering between the widely-separated antennas. This instrument
included the 10-m Space Radio Telescope, the 110-m Green Bank Telescope, the 14×25-m Westerbork
Synthesis Radio Telescope, and the 64-m Kalyazin Radio Telescope. The observations were performed
at 324 MHz, on baselines of up to 235,000 km in November 2012 and January 2014. In the delay
domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited
range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average
envelope of correlations of the visibility function show two exponential scales, with characteristic delays
of τ1 = 4.1 ± 0.3 µs and τ2 = 23 ± 3 µs, indicating the presence of two scales of scattering in the
interstellar medium. These two scales are present in the pulse-broadening function. The longer scale
contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from
highly-scattered paths, possibly from anisotropic scattering or from substructure at large angles.
Keywords: scattering — pulsars: individual B0329+54 — radio continuum: ISM — techniques: high

angular resolution

1. INTRODUCTION

All radio signals from cosmic sources are distorted by
the plasma turbulence in the interstellar medium (ISM).
Understanding of this turbulence is therefore essential
for the proper interpretation of astronomical radio ob-
servations. The properties and characteristics of this
turbulence can best be studied by observing point-like
radio sources, where the results are not influenced by
the extended structure of the source, but instead are di-
rectly attributable to the effect of the ISM itself. Pulsars
are such sources. Dispersion and scattering affect ra-
dio emission from pulsars. Whereas dispersion in the
plasma column introduces delays in arrival time that
depend upon frequency and results in smearing of the
pulse, scattering by density inhomogeneities causes an-
gular broadening, pulse broadening, intensity modula-
tion or scintillation, and distortion of radio spectra in
the form of diffraction patterns. The scattering effects
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have already been studied extensively theoretically (see,
e.g., Prokhorov et al. 1975; Rickett 1977; Goodman &
Narayan 1989; Narayan & Goodman 1989; Shishov et al.
2003) and observationally with ground VLBI of Sgr A∗

(Gwinn et al. 2014) and pulsars (see, e.g., Bartel et al.
1985; Desai et al. 1992; Kondratiev et al. 2007), as well
as with ground-space VLBI of PSR B0329+54 (Halca,
Yangalov et al. 2001) and the quasar 3C 273 (RadioAs-
tron, Johnson et al. 2016). Whereas the VSOP pulsar
observations were done at a relatively high frequency of
1.7 GHz and with baselines of ≈25,000 km and less,
ground-space VLBI with RadioAstron allows observa-
tions at one-fifth the frequency, where propagation ef-
fects are expected to be much stronger, and with base-
lines ∼10 times longer (Kardashev et al. 2013). Such
observations can resolve the scatter-broadened image of
a pulsar and reveal new information about the scattering
medium (Smirnova et al. 2014).

In this paper, we study the scattered image of the pul-
sar B0329+54 with RadioAstron. We demonstrate that
the pulsar is detected on baselines that fully resolve the
scattering disk. The interferometric visibility on these
long baselines takes the form of random phase and am-
plitude variations that vary randomly with observing fre-
quency and time. In the Fourier-conjugate domain of
delay and fringe rate, the visibility forms a localized,
extended region around the origin, composed of many
random spikes. We characterize the shape of this region
using averages and correlation functions. We argue the-
oretically that its extent in delay is given by the average
envelope of the impulse-response function of interstellar
scattering, sometimes called the pulse-broadening func-
tion. We find that the observed distribution is well-fit by
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Figure 1. Relations among the interferometric visibility V in var-
ious domains, and functions derived from it. The fundamental ob-
servable is the visibility in the domain of frequency ν and time t,
Ṽ (ν, t); this is known as the cross-power spectrum, or cross spec-
trum. An inverse Fourier transform of ν to delay τ leads to the
visibility V (τ, t); this is the cross-correlation function of electric
fields in the time domain (see Equation 21). A forward Fourier
transform of t to fringe rate f leads to V (τ, f). A forward trans-

form of τ back to ν produces Ṽ (ν, f), and an inverse Fourier trans-

form of f to t returns to Ṽ (ν, t) The square modulus of V (τ, t) is
C(τ, t). The cross-correlation function in τ of CR for right- and CL
for left-circular polarization is KRL(∆τ, t). We denote the Fourier
transform by F, and quantities in the domain of frequency ν by the
accent .̃

a model that is derived from an impulse-response func-
tion that has two different exponential scales. We discuss
possible origins of the two scales.

2. THEORETICAL BACKGROUND

Our fundamental observable is the interferometric visi-
bility V . In the domain of frequency ν, this is the product
of electric fields at two antennas A and B:

ṼAB(ν, t) = ẼA(ν, t)Ẽ∗B(ν, t). (1)

This representation of the visibility is known as the cross
spectrum, or cross-power spectrum. Because electric
fields at the antennas are complex and different, ṼAB
is complex. Usually visibility is averaged over multi-
ple accumulations of the spectrum, to reduce noise from
background and the noiselike electric field of the source.
The second argument t allows for the possibility that the
visibility changes in time, as it does for a scintillating
source, over times longer than the time to accumulate a
single spectrum. Such a spectrum that changes in time
is known as a “dynamic spectrum” (Bracewell 2000).
The correlator used to analyze our data, as discussed in
Sections 3 and 4, calculates ṼAB(ν, t) (Andrianov et al.
2014). Hereafter, we omit the baseline subscript indicat-
ing baseline AB in this paper, except in sections of the
Appendix where the baseline is important.

Under the assumptions that the source is pointlike,
and that we can ignore background and source noise,
the impulse-response function of interstellar scattering g
determines the visibility of the source. A single delta-
function impulse of electric field at the source is received

as a function g(te) of time te at the observer. Here, te
is Fourier-conjugate to ν and varies at the Nyquist rate.
The visibility is the product of Fourier transforms of g
at the two antennas:

ṼAB = g̃Ag̃
∗
B (2)

where g̃ is the Fourier transform of g(te).
We denote the typical duration of g(te) as τsc, the

broadening time for a sharp pulse. Within this time span,
g(te) has a complicated amplitude and phase. The func-
tion g(te) changes over longer times, as the line of sight
shifts with motions of source, observer, and medium.
This change takes place on a timescale tsc, and over a
spatial scale Ssc. The shorter and longer timescales τsc
and tsc lead to our use of dual time variables: te, of up
to a few times τsc and Fourier-conjugate to ν; and t, of a
fraction of tsc or more and Fourier-conjugate to f . This
duality is commonly expressed via the “dynamic spec-
trum” (see Section A.2). If the scattering material re-
mains nearly at rest while the line of sight travels through
it at velocity V⊥, then one spatial dimension in the ob-
server plane maps into time, and

tsc = Ssc/V⊥ (3)

The averaged square modulus of g is the pulse-
broadening function G = 〈g(te)g(te)

∗〉S . Here, the sub-
scripted angular brackets 〈...〉S indicate an average over
realizations of the scattering. This function is the aver-
age observed intensity for a single sharp pulse emitted
at the source. An average over time is usually assumed
to approximate the desired average over an ensemble of
statistically-identical realizations of scattering.

We derive a number of representations of the visibil-
ity and quantities derived from it, and show that these
provide straightforward means to extract the impulse-
response function. These functions are summarized in
Figure 1, and discussed briefly here, and in detail in Sec-
tion A of the Appendix. In particular, visibility in the
domain of delay τ and time t is V (τ, t). This is the cor-
relation function of electric field at the two antennas A
and B (Equation 21), and is the inverse Fourier trans-

form of Ṽ (ν, t) from ν to τ . We are also concerned with
the square modulus of V (τ, t) (see Section A.3.2):

C(τ, t) = |V (τ, t)|2 (4)

We calculate C for right- and left-circular polarizations
separately, and then correlate them in delay τ to form
KRL, the cross-correlation between polarizations:

KRL(∆τ, t) = 1
N

∑
τ CR(τ, t)CL(τ + ∆τ, t) (5)

Here, KRL is the correlation of a single measurement of
CR and CL, and N is the number of samples in CR and
CL.

When averaged over many realizations of the scat-
tering material, 〈KRL〉S is related to the statistics
of the pulse-broadening function G. Most commonly,
the average over many realizations of scattering ma-
terial is approximated by averaging over a time much
longer than tsc; for this reason we omit the time ar-
gument for 〈KRL(∆τ)〉S . Equivalently, evaluation of
〈KRL(∆τ, fmax)〉 = 〈CR(τ, fmax)CL(τ + ∆τ, fmax)〉τ at
the fringe rate fmax of the maximum magnitude of KRL
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Table 1
Diary of observations

Epoch of Time Ground Polarizations Scan
Observations Span Telescopes Length

2012 Nov 26 through 29 1 hr/day GB RCP+LCP 570 s
2014 Jan 1 and 2 12 hr WB, KL RCP 1170 s

Table 2
Observations on Earth-Space Baselines

Epoch Projected RA
Baseline Length Observing Time

(103 km) (minutes)

2012 Nov 26 60 60
2012 Nov 27 90 60
2012 Nov 28 175 60
2012 Nov 29 235 60
2014 Jan 1 20 60
2014 Jan 2 70 100
2014 Jan 2 90 120

yields the same time average. For this theoretical discus-
sion, fmax = 0; for practical observations, instrumental
factors can offset the fringe rate from zero, so that fmax
provides the most reliable time average.

For a baseline that extends much further than the scale
of scattering Ssc (see Equation 32):

〈KRL(τ)〉S = G(τ)⊗G−(τ)⊗G(τ)⊗G−(τ) (6)

+
(
1 if τ = 0

)
Here, we introduce the symbol ⊗ to indicate convolution,
and denote the time-reverse of G as G−(τ) = G(−τ).

Our analysis method differs somewhat from Smirnova
et al. (2014), who used structure functions of intensity,
visibility, and visibility squared to study scattering of
pulsar B0950+08 on an extremely long baseline to Ra-
dioAstron. The two methods are closely related theoreti-
cally. Structure functions are particularly valuable when
the characteristic bandwidth approaches the instrumen-
tal bandwidth, and can be extended to cases where the
signal-to-noise ratio is low, as they discuss.

3. OBSERVATIONS

The observations were made in two sessions: the first
for one hour each on the four successive days November
26 to 29, 2012, and the second for a total of 12 hours
on the two days January 1 and 2, 2014. The first ses-
sion used the 10-m RadioAstron Space Radio Telescope
(RA) together with the 110-m Robert C. Byrd Green
Bank Telescope (GB). The second session used the RA
together with the 14 × 25-m Westerbork Synthesis Ra-
dio Telescope (WB), and the 64-m Kalyazin Radio Tele-
scopes (KL). Both right (RCP) and left circular polariza-
tions (LCP) were recorded in November 2012, and only
one polarization channel (RCP) was recorded in January
2014. Because of an RA peculiarity at 324 MHz, the
316–332 MHz observing band was recorded as a single
upper sideband, with one-bit digitization at the RA and
with two-bit digitization at the GB, WB, and KL. Science
data from the RA were transmitted in real time to the
telemetry station in Pushchino (Kardashev et al. 2013)
and then recorded with the RadioAstron data recorder

(RDR). This type of recorder was also used at the KL,
while the Mk5B recording system was used at the GB
and WB. Table 1 summarizes the observations.

The data were transferred via internet to the Astro
Space Center (ASC) in Moscow and then processed with
the ASC correlator with gating and dedispersion applied
(Andrianov et al. 2014). To determine the phase of the
gate in the pulsar period, the average pulse profile was
computed for every station by integrating the autocor-
relation spectra obtained from the ASC correlator. The
autocorrelation spectra VAA(ν, t) are the square modulus
of electric field at a single antenna.

In November 2012 the projected baselines to the space
radio telescope were about 60, 90, 175, and 235 thou-
sand kilometers for the four consecutive days, respec-
tively. Data were recorded in 570-second scans, with
30-second gaps between scans. In January 2014 the pro-
jected baselines were about 20, 70, and 90 thousand kilo-
meters during the 12-hour session. Data were recorded in
1170-second scans. The RA operated only during three
sets of scans of 60, 100 and 120 min each, with large
gaps in between caused by thermal constraints on the
spacecraft. The auto-level (AGC), phase cal, and noise
diode were turned off during our observations to avoid
interference with pulses from the pulsar. Table 2 gives
parameters of the Earth-space baselines observed.

4. DATA REDUCTION

4.1. Correlation

All of the recorded data were correlated with the ASC
correlator using 4096 channels for the November 2012
session and 2048 channels for the January 2014 session,
with gating and dedispersion activated. The ON-pulse
window was centered on the main component of the av-
erage profile, with a width of 5 ms in the November 2012
session and 8 ms in the January 2014 session. These
compare with a 7-ms pulse width at 50% of the peak
flux density (Lorimer et al. 1995). The OFF-pulse win-
dow was offset from the main pulse by half a period and
had the same width as the ON-pulse window. The cor-
relator output was always sampled synchronously with
the pulsar period of 0.714 s (single pulse mode). We
used ephemerides computed with the program TEMPO
for the Earth center (Edwards et al. 2006). The results
of the correlation were tabulated as cross power spectra,
Ṽ (ν, t), written in standard FITS format.

4.2. Single-Dish Data Reduction

Using autocorrelation spectra at GB, KL, and WB,
we measured the scintillation time tsc and bandwidth
∆νsc = 1/2πτsc. The results are given in Table 3. Our
analysis using interferometric data, for which the noise
baseline is absent and the spectral resolution was higher,
is more accurate for the constants τ1 and τ2 as discussed
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Table 3
Measured Scattering Parameters of PSR B0329+54

Epoch tsc ∆νsc wnτ wnf τ1 = 1/k1 τ2 = 1/k2
(s) (kHz) (ns) (mHz) (µs) (µs)

(1) (2) (3) (4) (5) (6) (7)

Nov 2012 114± 2 15± 2 50± 5 20± 2 4.1± 0.3 23± 3
Jan 2014 102± 2 7± 2 43± 3 25± 3 7.5± 0.3 –

Note. — Columns are as follows: (1) Date of observations, (2)
Scintillation time from autocorrelation spectra as the half width at
1/e of maximum, (3) Scintillation bandwidth from single-dish au-
tocorrelation spectra as the half-width at half maximum (HWHM),
(4) HWHM of a sinc function fit to the central spike of the visibility
distribution along the delay axis, (5) HWHM of a sinc function fit
to the central spike of the visibility distribution along the fringe
rate axis, (6) Scale of the narrow component of |KRL(∆τ)| (Section
5.2.3), (7) Scale of the broad component of |KRL(∆τ)| (Section
5.2.3).

below, so we quote those values in Table 3.

4.3. VLBI Data Reduction

The ASC correlator calculates the cross-power spec-
trum, Ṽ (ν, t), as discussed in Sections 2 and A.3.1. The
resolution of the resulting cross-power spectra is 3.906
kHz for the 2012 observations and 7.812 kHz for the 2014
observations. Because the scintillation bandwidth was
comparable to the channel bandwidth for the 2014 ob-
servations, as shown in Table 3, and because the single
recorded polarization at that epoch prevented us from
correlating polarizations to form KRL, as discussed in
Section 5.2.3, we focus our analysis and interpretation
on the 2012 observations.

5. ANALYSIS OF INTERFEROMETRIC VISIBILITY

We investigated the scattering of the pulsar from the
visibility in the delay-fringe-rate domain, V (τ, f). We
studied the statistics of visibility V (τ, f) as a function
of delay, fringe rate, and baseline length. If there were
no scattering material between the pulsar and the ob-
server, we would expect for |V (τ, f)| one spike at zero
delay and fringe rate with magnitude that remains con-
stant as a function of baseline length, and with width
equal to the inverse of the observed bandwidth in delay,
and the inverse of the scan length in fringe rate. Scat-
tering material in between changes this picture. First we
expect the spike at zero delay and fringe rate to decrease
in magnitude with increasing baseline length, perhaps
to the point where it would become invisible. Second,
we expect additional spikes to appear around the spike
at zero delay and fringe rate. The distribution of these
spikes give us invaluable information about the statistics
of the scattering material.

As we discuss in this section, we fitted models to the
distribution of visibility, as measured by the correlation
function KRL, and thus derived scintillation parameters
that describe the impulse-response function for propaga-
tion along the line of sight from the pulsar. We also com-
puted the maximum visibility as a function of projected
baseline length, as we discuss in detail in a separate pa-
per (Paper II: Popov et al., in preparation).

For strong single pulses the visibility in the cross spec-
tra, Ṽ (ν, t), had signal-to-noise ratios sufficiently large

for a useful analysis. However, we decided to ana-
lyze the data from the time series of multiple pulses.
Fourier transform of the cross spectrum, Ṽ (ν, t), to the
delay/fringe-rate domain yields V (ν, f) and concentrates
the signal into a central region, and thus provides a high
signal-to-noise ratio. The sampling rate of individual
cross spectra in the time series was the pulse period of
0.714 s, as noted in Section 4.1. The time span of cross
spectra used to form V (τ, f) varied, ranging from 71.4 s
to 570 s, depending upon the application.

5.1. Distribution of visibility

In Figure 2 we display the magnitude of the visibility in
the delay/fringe-rate domain, |V (τ, f)|, for a 500-s time
span. The data were obtained on 29 November 2012 in
the RCP channel for a projected 200Mλ GB-RA base-
line. The cross spectra, Ṽ (ν, t), from which we obtained
|V (τ, f)| were sampled with 4096 spectral channels across
the 16-MHz band, at the pulsar period of 0.714 s; con-
sequently, the resolution was 0.03125 µs in delay, and
2 mHz in fringe rate. As Figure 2 shows, no dominant
central spike is visible at zero delay and fringe rate, as
would be expected for an unresolved source. Our long
baseline interferometer completely resolves the scatter-
ing disk. Instead we see a distribution of spikes around
zero delay and fringe rate that is concentrated in a rela-
tively limited region of the delay-fringe rate domain. The
locations of the various spikes appear to be random. Be-
cause the scattering disk is completely resolved on our
long baseline, we conclude that the spikes are a conse-
quence of random reinforcement or cancellation of paths
to the different locations of the two telescopes, and hence
interferometer phase.

In Figure 2, the distribution of the magnitude of visibil-
ity is relatively broad along the delay axis and relatively
narrow along the fringe rate axis. The extent is limited in
delay to about the inverse of the scintillation bandwidth,
τsc = 1/2π∆νsc; and in fringe rate to about the inverse
of the diffractive timescale tdiff . Within this region, the
visibility shows many narrow, discrete spikes. If statis-
tics of the random phase and amplitude of scintillation
are Gaussian, and the phases of the Fourier transform
randomize the different sums that comprise the visibility
in the delay-fringe rate domain, then the square modulus
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Figure 2. Magnitude of visibility in the delay-fringe rate domain |V (τ, f)|, for a 500-s time span on 29 November 2012 in the RCP
channel, on the RA-GB baseline. Visibility is normalized for autocorrelation: |V (0, 0)| = 1. The axes show instrumental offsets, including
about 6 µs in delay. Top: three-dimentional representation; bottom: two-dimentional representation.
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Figure 3. Examples of the fine structure of the magnitude of vis-
ibility, |V (τ, fmax)|, as a function of delay τ , with fringe rate fixed
at the maximum of the delay-fringe rate visibility near zero fringe
rate, fmax . From lowermost to uppermost, the curves correspond
to progressively longer baselines, with the telescopes indicated and
the approximate baseline projections given in Mλ in parentheses.
Curves are offset vertically, and the upper 2 magnified as the ver-
tical scale indicates, for ease of viewing. All curves show 71.4 s
of data. Uppermost curve is from 2012 November 29; the rest
are from 2014 January, when multiple ground telescopes provided
shorter baselines. Note variation in scattering time between epochs
as given in Table 3. The uppermost panel is the cross-section of
the data shown in Figure 2, but for 71.4 s integration. Visibility is
normalized as in Figure 2. The best estimate of instrumental delay
has been removed for each curve.

of V (τ, f) should be drawn from an exponential distribu-
tion, multiplied by the envelope defined by the determin-
istic part of the impulse-response function, as discussed
in the Appendix.

Along the delay axis, |V (τ, f)| takes the general form
suggested by Figures 2 and 3: a narrow spike surrounded
by a broad distribution. We found that the central spike
takes the form of a sinc function in both delay and fringe
rate coordinates, as expected for uniform visibility across
a square passband (Thompson et al. 2007). The widths
are somewhat larger than values expected from observ-
ing bandwidth of 16 MHz and time span of 71.4 s, of
wnτ = 31.25 ns and wnf = 14 mHz respectively, proba-
bly because of the non-uniformity of receiver bandpasses
and pulse-to-pulse intensity variations, respectively. The
broader part of the distribution takes an exponential
form along the fringe-rate axis in this case; more gen-
erally, the form can be complicated, particularly over
times longer than 600 s. Traveling ionospheric distur-
bances may affect the time behavior of our 92-cm obser-
vations; in particular, they may be responsible for the
20 to 25 mHz width of the narrow component in fringe
rate, as noted in Table 3. We do not analyze the broader
distribution in fringe rate further in this paper; we will
discuss this distribution, and the influence of traveling
ionospheric disturbances, in a separate publication (Pa-
per III, Popov et al. in preparation). Because of the rel-
atively small optical path length of the ionosphere, even
at λ = 92 cm, they cannot affect the cross spectrum
(Hagfors 1976).

The distribution of the magnitude of the visibility in
delay/fringe-rate domain changes with baseline length.
Figure 3 displays cross-sections through the maximum

of the distribution of magnitude for a range of baseline
lengths, as a function of delay. The maxima lie near
zero fringe rate, as expected. Under the plausible and
usual assumption that the correct fringe rate lies at the
fringe rate, fmax, where the distribution peaks, the cross-
section represents the visibility averaged over the time
span of the sample:

V (τ, fmax) = 〈V (τ, t)〉t (7)

The top panel of Figure 3 shows this cross-section
through Figure 2. The next lower panel shows the cross-
section for the slightly shorter KL-RA baseline. The
three lower plots give the equivalent cross-sections for 10
times and 100 times shorter projected baselines. These
three short-baseline cross-sections are qualitatively dif-
ferent from the long baseline cross sections: the visibility
has a central spike resulting from the component of the
cross-spectrum that has a constant phase over frequency,
as well as the broad distribution from the component
that has a varying phase over frequency. The central
spike is strongest for the shortest baseline and weaker
for the next longer baselines, as expected based on the
results of Sections A.3.1 and A.3.2. At very long base-
lines the central spike is absent even after averaging the
visibility over the whole observing period, and only the
broad component is present. As expected from Figure
2, in the delay/time domain the broad component ap-
pears as spikes distributed over a range of about 10 µs
in delay. These spikes keep their position in delay for
the scintillation time of about 100 to 115 s, as listed in
Table 3.

The character of the broad component changes with
baseline length as well: mean and mean square visibility
are the same for short and long baselines; but excursions
to small and large visibilities are more common for a long
baseline (Gwinn 2001, Eq. 12).

5.2. Averages and Correlation Functions

Averages of the visibility, and averages of the correla-
tion function of visibility, extract the parameters of the
broad and narrow components of visibility. Such aver-
ages approximate the statistical averages discussed in
Sections 2 and A. They seek to reduce noise from the
observing system and emission of the source, as well as
variations from the finite number of scintillations sam-
pled, while preserving the statistics of scintillation. The
averages and correlation functions allow the inference of
parameters of the impulse-response function of propaga-
tion from the statistics of visibility.

5.2.1. Square Modulus of Visibility C

The mean square modulus of visibility, 〈C(τ)〉S =
〈|V (τ)|2〉S , provides useful and simple characterization
of visibility. To approximate the average over realiza-
tions of scattering 〈...〉S , we average over many samples
in time t and over bins in delay τ . We realize the av-
erage over time by evaluating V (τ, f) at the fringe rate
of maximum amplitude fmax, as discussed in Section 2.
We also average over 16 lags in delay τ . The result-
ing average shows a broad component surrounding the
origin; on shorter baselines, it shows a spike at the ori-
gin. The broad distribution samples the properties of
the fine structure seen in Figures 2 and 3, and the spike
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Figure 4. Cross-section of the mean square visibility in the
delay/fringe-rate domain 〈C(τ)〉S = |V (τ, fmax)|2 along the de-
lay axis, at the fringe rate fmax where the magnitude of visibility
peaks, close to zero mHz. The visibilities for the GB-RA baseline
on 2012 Nov 28 at 21:40 UT are shown as open circles. The visibil-
ities were computed by an inverse Fourier transform of the spectra,
Ṽ (ν, t), over 71.4 s time spans, and then by averaging over 6 ob-
serving scans, each 570 s long. They were then further averaged in
delay, over 16 points or 0.5 µs, to smooth fluctuations. The dashed
horizontal line shows the offset contributed by background noise.
The solid gray line shows the reconstructed form given by Equa-
tion 34, offset by the noise level, with parameters taken from the fit
shown in Figure 5. The light dashed curve shows only the narrow
component of the two-exponential model. Units of visibility are
correlator units.

to those seen on the shorter baselines in Figure 3. We
argue in Section A that the spike in 〈C(τ)〉S is related
to the average visibility, and the broad component to the
impulse-response function.

Figure 4 shows an example of the broad component of
〈C(τ)〉S . This is estimated as |V (τ, fmax)|2, by selecting
the peak fringe rate fmax to average in time for each of 6
scans, averaging the results for the scans, and averaging
over 16 lags of delay to smooth the data. These averag-
ing procedures serve to approximate the average over an
ensemble of realizations of scattering. Background noise
adds complex, zero-mean noise to V (τ, f), with uniform
variance at all lags; this adds a constant offset to the
average 〈C(τ)〉S = |V (τ, fmax)|2.

5.2.2. Correlation Function K

Using Equation 5, we estimated 〈KRL(∆τ)〉S , the aver-
aged cross-correlation function between the square mod-
ulus of right-circular polarized (RCP) and of left-circular
polarized (LCP) of visibility in the delay domain. (Note
that 〈KRL(∆τ)〉S is not the correlation function of the
average 〈C〉S , but rather the average of the correlation
function 〈CR ⊗ CL〉S .) Because the background noise
in the two circular polarizations is uncorrelated, they do
not contribute an offset to 〈KRL(∆τ)〉S . This allows us
to follow the effects of the impulse-response function to
much lower levels than for 〈C〉S . The correlation func-
tion 〈KRL(∆τ)〉S is thus less subject to effects of noise,
and is more sensitive to the broad component of the dis-
tribution, than 〈C〉S .

To compute an estimate of 〈KRL(∆τ)〉S , we calculated
the squared sum of real and imaginary components of
V (τ, t), the inverse Fourier transform of the cross-power
spectrum. We formed these for each strong pulse, and

Figure 5. An example of the correlation function 〈K(∆τ, fmax)〉t
on 2012 Nov 28, averaged over 570 s starting at 21:40:00 UT. The
data were normalized by the square root of KRR and KRR at
∆τ = 0. The best-fitting parameters for a 2-exponential fit of the
form of Equation 35 are as indicated.

normalized them by the autocorrelation functions at each
antenna. From these we formed the un-averaged cor-
relation function KRL(∆τ, t). We then averaged KRL

over 570-sec scans to form 〈KRL(∆τ)〉t. Averaging in
the time domain approximated an average over realiza-
tions of the impulse-response function for the scattering
medium. Each 570-sec scan included 100 to 250 strong
pulses, yielding one averaged sample of 〈KRL(∆τ, t)〉t for
each scan. We obtained 22 measurements in total, with
6 samples of 〈KRL(∆τ, t)〉t for November 26 , 28, 29 ob-
serving sessions. We obtained only 4 such samples for
November 27 because of no significant detections of V
for two scans on that date.

5.2.3. Two Exponential Scales

Examination of the averaged cross correlation function,
〈KRL(∆τ, t)〉t, revealed a spike at the origin and two
exponential scales for the broad component, a large one
and a small one. Figure 5 shows an example.

The spike at the origin arises from the fine structure of
scintillation in the broad component of visibility, as seen
in Figures 2 and 3. This structure is identical in right-
and left-circular polarizations, so its correlation leads to
the spike.

The two exponential scales are apparent as the slopes
of the steeper and narrower parts of the distribution.
We see these two scales even for single pulses, which
are strong enough to show the two-scale structure. We
did not observe these scales without doubt in spectra
from single-dish observations, because the resulting cor-
relation functions are more subject to noise, gain fluc-
tuations, and interference. The scales are both present
for 〈C〉S , but the longer scale is seen more clearly in
〈KRL(∆τ)〉S (as comparison of Equations 34 through 36
shows).

5.2.4. Model Fit

We formalized the two exponential scales seen for
〈K(∆τ)〉S with a model fit. The model assumed a pulse-
broadening function with two exponential scales. Under
this assumption, a short pulse appears at the observer
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with average shape:

G(τ) =

{
A1k1e

−k1τ +A2k2e
−k2τ , τ ≥ 0

0, τ < 0
(8)

The pulse rises rapidly, and falls as the sum of the two
exponentials.

The assumed form for G leads to predictions for the
forms of 〈C〉 and 〈K〉, as discussed in Section B. For
〈C〉, we expect a cusp at the origin, and two exponen-
tials with scales k1 and k2 and different weights on either
side. For 〈K〉, correlation smooths the cusp at the ori-
gin, producing a smooth peak, with the same exponential
scales appearing to either side.

Figure 5 shows the best-fitting model of this form for
the data shown there. This model has parameters:

A1/A2 = 0.33 (9)

k1 = 1/4.3 µs (10)

k2 = 1/23 µs. (11)

The model reproduces the two scales, and the smooth
peak, well. The model also predicts the magnitude of the
spike accurately, with zero average visibility ρAB = 0.

The model shown in Figure 4 shows the model for C,
reconstructed using Equation 34 with parameters from
the fit to Figure 5. The two scales appear in the model,
although the offset from noise contributes at large delay
τ . As the figure shows, a single exponential does not fit
the model well: the narrow component is satisfactory at
small τ , but falls well under the data at larger τ . A high-
winged function such as a Lorentzian can fit C well, but
the rounded peak leads to a very wide peak for K that
cannot match the data, and the inversion to a G(t) that
remains finite, and is zero for t < 0 as causality demands,
is problematic.

The best-fitting scales and the magnitudes of the two
contributions varied from scan to scan, but in a manner
that was consistent with our finite sample of the scin-
tillation pattern, and the inhomogeneous averaging of
pulses with different intensities. We show a histogram
of the results of our fits to 570-sec intervals in Figure
6. On 26 to 29 November 2012, the shorter scale av-
eraged to τ1 = 4.1 ± 0.3 µs, and the longer scale to
τ2 = 22.5 ± 2.9 µs. The scales had a relative power
of A2/A1 = 0.38.

6. DISCUSSION

On a long baseline that fully resolves the scattering
disk, as Figure 3 shows, we observe multiple sharp spikes
in the visibility V (τ, f) is a consequence of the variation
of the amplitude and phase of visibility. (See also Paper
II, Popov et al. in preparation). The characteristic re-
gion of that variation, ∆τ ·∆f , reflects the product of the
inverses of the scintillation bandwidth ∆τ ≈ 1/2π∆νsc

and the scintillation timescale ∆f ≈ 1/2πtsc. These
quantities are the width in time of the impulse-response
function, and the time for the impulse-response func-
tion to change as the line of sight to the observer moves
through the scattering material.

Detailed examination of the correlation function of vis-
ibility KRL(∆τ, t) reveals the presence of two character-
istic, exponential scales. Both scales are visible in the
single-pulse correlation functions of right and left circu-

Figure 6. Upper panel: The distribution of long and short time
scales for exponential scales of 〈KRL(∆τ, fmax)〉t. Each pair of
scales was measured for a 570-s interval on one of the 4 consec-
utive observing days in 2012. Lower panel: The distribution of
magnitudes of long and short time scales.

lar polarization, as well as in the correlation function
〈KRL(∆τ)〉t averaged over 570 s shown in Figure 5. For
an assumed screen distance of half the pulsar distance of
D = 1.03+0.13

−0.12 kpc (Brisken et al. 2002), the two scales
correspond to diffractive scales of:

`d1 =
λ

2π

√
D

cτ1
= 2.3× 109 cm (12)

`d2 =
λ

2π

√
D

cτ2
= 1.0× 109 cm

The diffractive scale is the lateral distance at the screen
where phases decorrelate by a radian (Narayan 1992).
The refractive scale gives the scale of the scattering disk:

`r1 =
√
cτ1D = 1.9× 1013 cm (13)

`r2 =
√
cτ2D = 4.6× 1013 cm

In contrast, Britton et al. (1998) measured angular
broadening for PSR B0329+54 of θH < 3.4 mas at ν =
325 MHz, where θH is the full width of the scattered im-
age at half the maxium intensity. This corresponds to a
refractive scale of `r = (θH/

√
8 ln 2)D/2 < 1.1×1013 cm.

This upper limit is somewhat smaller than the values ob-
tained from our observations, even if one takes into ac-
count the facts that the larger scale contains only 0.38
of the power of the shorter one, and that the scattering
material may be somewhat closer to the pulsar than to
the observer.

6.1. Previous Observations

Shishov et al. (2003) studied the scattering properties
of PSR B0329+54 in detail, using single-antenna obser-
vations at 102 MHz, 610 MHz, 5 GHz, and 10.6 GHz
to form structure functions of the scintillation in time
and frequency on a wide range of scales. They con-
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cluded that the scattering material has a power-law spa-
tial spectrum with index α+ 2 = 3.50± 0.05, marginally
consistent with the value of 11/3 expected for a Kol-
mogorov spectrum, with an outer scale of 2 × 1011 m <
L0 < 1017 m. Using VLBI, Bartel et al. (1985) ob-
served PSR B0329+54 at 2.3 GHz and set limits on
the separation on the emission regions corresponding
to different components of the pulse profile. Yangalov
et al. (2001) observed PSR B0329+54 at 1.650 GHz with
ground-space baselines to HALCA, and found that the
source varied strongly with time. They ascribed this vari-
ation to scintillation, with the scintillation bandwidth
comparable to the observing bandwidth at their observ-
ing frequency. Self-calibration with timespans less than
the scintillation time returned a pointlike image, as ex-
pected. Semenkov et al. (2004) analyzed these data,
including ground-ground baselines. They studied both
single-antenna autocorrelation functions VAA(∆τ) and
cross-correlation functions VAB(∆τ). They detected two
timescales for the scintillation pattern, of 20 min and 1
min. They found that the properties of scattering could
not be explained by a single, thin screen, and further that
velocities indicated relative motions within the scattering
medium.

Popov & Soglasnov (1984) had previously observed two
coexisting scales of scattering for PSR B0329+54 . They
found scintillation bandwidths of ∆ν1 = 115 Hz and
∆ν2 = 750 Hz, measured as the 1/e point of the cor-
relation function of intensity at an observing frequency
of 102 MHz, using the Large Cophase Array of Puschino
Observatory. The ratio of these scales, ∆ν2/∆ν1 = 6.5
is larger than the ratio of k1/k2 = 5.5 that we observe.
Scaled to our observing frequency of 324 MHz, using the
∆ν ∝ ν22/5 scaling appropriate for a Kolmogorov spec-
trum, and converting from ∆ν to τ using the uncertainty
relation τ = 1/2π∆ν, we find that these values corre-
spond to 1.3 and 8 µs, respectively, about a factor of 3
smaller that the scales we observe. Of course, interpo-
lation over a factor of 3 in observing frequency and the
different observing techniques may introduce biases, and
scattering parameters likely vary over the years between
the two measurements. Two scales of scattering have
also been observed for other pulsars (Gwinn et al. 2006;
Smirnova et al. 2014).

6.2. Origin of Two Scales

Two scales of scattering may be a consequence of a
variety of factors. Non-Gaussian statistics of scattering
can produce multiple scales, although this usually ap-
pears as a continuum of scales rather than two different
individual scales, as in a power-law distribution or a Levy
flight (Boldyrev & Gwinn 2003). A Kolmogorov model
for scattering in a thin screen does not fit as well as our
model based upon a two-exponential impulse-response
function, or even as one based upon one exponential. A
model with two discrete scales appears to fit our data
better.

One explanation is anisotropic scattering. This can
produce two scales, corresponding to the major and mi-
nor axes of the scattering disk, as discussed in Section C
of the Appendix. The ratio of the scales of k2/k1 = 5.5
corresponds to the parameter α2 = 57, and an axial ra-
tio of θ2/θ1 =

√
1 + α2 =

√
2(k2/k1)2 − 3 = 7.4. In a

simple model for anisotropic scattering in a thin screen,
we expect the ratio of power in the scales to be approxi-
mately

√
1 + α2/2π(2 + α2) ≈ 0.40, as shown in Section

C of the Appendix. This compares well with our ob-
served ratio of A1/A2 = 0.38. However, our observations
for ground-space baselines at a variety of orientations do
not show anisotropy. A variety of models, involving ma-
terial with varying anisotropy distributed along the line
of sight, and strong anisotropy that slips between our
long baselines, might match our data.

A second explanation is the complicated structure ob-
served within dynamic spectra: most commonly observed
as “scintillation arcs” (Stinebring et al. 2001). Recently,
it has been suggested that this structure arises from in-
terference among subimages, resulting from refraction by
interstellar reconnection sheets (Pen & Levin 2014). This
complicated structure produces time and frequency vari-
ations on a wide range of scales. Of course, we are con-
sidering very long baselines, where the scintillation-arc
patterns should be completely uncorrelated between an-
tennas. This may lead to blurring, resulting in a 2-scale
correlation function without particularly strong struc-
ture corresponding to the discrete arcs seen on shorter
baselines (Brisken et al. 2010). We do not see any direct
evidence of scintillation arcs, as such. The magnitude of
the visibility shows a featureless decline with increase of
either of the 2 dimensions |τ | and |f |. The GB autocor-
relation functions do not show scintillation arcs either,
for our observations.

7. SUMMARY

We made VLBI observations of PSR B0329+54 with
RadioAstron at 324 MHz on projected baselines of up to
235,000 km. Our goal was to investigate scattering by
the interstellar medium. These properties affect radio
observations of all celestial sources. While the results of
such observations are in general influenced by the convo-
lution of source structure with the scattering processes,
pulsars are virtually point-like sources and signatures in
the observational results can be directly related to the
scattering properties of the interstellar medium.

On long baselines, in the domain of delay τ and fringe-
rate f , the correlation function of visibility V (τ, f) is a
collection of narrow spikes, located within a region de-
fined by the inverses of the scintillation bandwidth ∆τ ≈
1/2π∆νsc and the scintillation timescale ∆f ≈ 1/2πtsc.
For shorter baselines, a sharp spike at the center of this
region represents the average visibility; on long baselines
where the average visibility drops to near zero, this spike
is absent.

The mean square visibility, 〈C(τ)〉S = 〈|V (τ)|2〉S , is
well fit with a smooth model, indicating that the vis-
ibility spikes are the result of random interference of
many scattered rays. To form a quantity less subject
to effects of noise, we convolve the mean-square left- and
right-circular polarized visibility to form 〈KRL(∆τ)〉S =
〈|VL(τ)|2⊗τ→∆τ |VR(τ)|2〉S . The average correlation
function 〈KRL(∆τ)〉S shows two exponentials with dif-
ferent characteristic timescales. The forms of 〈C(τ)〉 and
〈KRL(τ)〉 are well fit with a simple model, that assumes
that the average pulse-broadening function G is the sum
of two exponentials with different timescales.

On 2012 Nov 26 to 29, the shorter timescale was
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4.1± 0.3 µs, and the longer timescale was 23± 3µs, with
the longer-scale exponential containing approximately
0.38 times the power of the shorter-scale exponential.
This double exponential may arise from anisotropic scat-
tering; or from scattered radiation at large angle, perhaps
corresponding to the subimages seen in single-dish and
shorter-baseline observations. Further investigation of
the properties of the image of the scattered pulsar on
long and short baselines, using these data, will help to
clarify the origin of the two scales.
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APPENDIX

A. IMPULSE-RESPONSE FUNCTION AND VISIBILITY

A.1. Introduction

Under general assumptions, refraction and scattering convolve the electric field of a source with an impulse-response
function g. This function varies with position in the observer plane, decorrelating over some lateral scale; and with
time, as the line of sight to the source moves with respect to the scattering material, and as the scattering material
evolves. The task of this section is to relate the impulse-response function to the statistics of visibility, as given by the
functions C and K introduced in Section 2 above.

A.1.1. Notation

The visibility VAB is the conjugated product of electric fields at two antennas (Equation 1). We usually omit the
subscripts indicating baseline AB on V , unless they are important for the immediate argument. We denote the Fourier
transform from the time or delay domain (t or τ) to the frequency or fringe rate domain (ν or f) by F, and its inverse
by F−1. We accent symbols with tilde “̃ ” to denote quantities that depend on observing frequency ν, and the same
symbols without accent for the Fourier-conjugate domain of delay τ or time te. We assume that the variables describing
time and frequency te, ν, τ, t, f , are discrete. They range from −N/2 to N/2− 1, where N is the number of samples in
the time or frequency span. For τ and te one sample is the inverse of the Nyquist rate, and they can span the time to
accumulate a single realization of the spectrum; for t and its Fourier conjugate f one sample is the averaging time for
one spectrum, and they can span one observation.

Our convention for normalization of the Fourier transform is that a function h(τ) normalized to unit area in the

delay domain has value unity at zero frequency: h̃(ν = 0) = 1. Conversely, if h̃(ν) is normalized to unit area in the
frequency domain, h(τ = 0) = 1/N . This is the “{1,−1}” convention of Wolfram Mathematica (Weisstein 2014).
With this convention, Parseval’s Theorem takes the form:

N/2−1∑
τ=−N/2

h(τ)h∗(τ) =
1

N

N/2−1∑
ν=−N/2

h̃(ν)h̃∗(ν) (14)

A.2. Impulse-Response Function

As noted above, the observed electric field of a pulsar Eobs(to) is the convolution of the electric field emitted at the
source with a kernel g that depends on scattering:

Eobs(to) =

few×τsc∑
te=0

g(te)Esrc(to − te) = g ⊗ Esrc (15)

where we introduce the symbol ⊗ for convolution. The kernel g is the impulse-response function; in other words, if
the pulsar emits a sharp spike, then the observed electric field of the pulse is simply a copy of g. Because of this
convolution, g is also known as the propagation kernel; it is also known as the Green’s function, and the S matrix
(Gwinn & Johnson 2011, and references therein). Both Esrc and g vary at the Nyquist rate: the inverse of the total
observed bandwidth. Usually, we assume that the intrinsic electric field of the source is white noise at the Nyquist rate:
it is drawn from a Gaussian distribution in the complex plane at each instant (Rickett 1975). The impulse-response
function extends over a time span of a few times τsc, representing the time over which a sharp pulse at the source
would be received. It is zero outside this relatively narrow time window.

If the statistics of the scattering material are stationary, the characteristic shape and scales of g will remain fixed,
while details of amplitude and phase vary on the timescale tsc (Equation 3). An average of the squared electric field
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over many impulses emitted by the source over times longer than tsc will reveal the characteristic form. One simple
model form for g that includes deterministic and random parts is the product of a non-varying envelope gD(te), and
a random function gR, that varies rapidly with te during the course of each pulse:

g(te) = gD(te) · gR(te, t) (16)

Both gR and gD span a few times τsc. Over that time span, gR varies wildly, and randomly; however, it exhibits nearly
the same form for the next pulse. Over the longer timescale tsc � τsc, the form of the random function gR changes
slowly. For typical observations of a pulsar, such as those described in this paper, τsc is some fraction of the width
of one pulse, or a few microseconds; whereas tsc is many pulsar periods, or many seconds. Such situations, where a
convolution may have a slowly-varying kernel, are commonly treated as “dynamic spectra” (see Bracewell 2000, Ch.
19).

The intensity received by an observer for an electric-field impulse at the source, averaged over many such impulses
with different realizations of the scattering material, is the square modulus of the deterministic part of g, which we
call G: 〈

Iobs(te)
〉
S
≡ G(te) = gD(te) · g∗D(te) (17)

Here, the subscripted angular brackets 〈...〉S indicate a statistical average over realizations of the scattering medium,
for example as approximated by an average over pulses spanning a time greater than tsc. Often, G is called the
pulse-broadening function. So that propagation kernel leaves the intensity of the source unchanged, when averaged
over time, we set: ∑

te

G(te) ≡ 1 (18)

For strong scattering, as is observed for most pulsars at most wavelengths, we expect that many different paths, with
random amplitude and phase, will contribute to the received pulse at each instant te. Therefore, we expect that the
random part gR will have the statistics of a random walk at each instant: the observed electric field will be drawn from
a circularly Gaussian distribution in the complex plane, with zero mean. On the other hand, the deterministic part gD
sets the standard deviation of g; it reflects how many paths, and with what strength, contribute at each delay. This
model for scintillation is closely related to the amplitude-modulated-noise (AMN) model for pulsar emission (Rickett
1975). In this model, the electric field emitted by the pulsar is the product of noise, drawn from a zero-mean Gaussian
distribution in the complex plane, with a more-slowly varying envelope that determines the standard deviation of the
noise at each instant.

We suppose that the random part of the propagation kernel is completely uncorrelated in time, at the Nyquist rate,
within its span of a few τsc. Then, at a location “A,”

〈
gRA(te, t)g

∗
RA(te + τ, t)

〉
S

=

{
1 if τ = 0

0 if τ 6= 0
(19)

On the other hand, gRA is nearly the same for each emitted pulse; it changes only over the longer timescale tsc. The
question of how this slower variation of gR with time depends upon baseline length is much more complicated, and we
discuss it briefly below. However, if the lateral separation of the two stations A and B is much greater than the scale
of the scattering pattern, then the random parts of g for the two stations, gRA and gRB , are completely uncorrelated.

A.3. Visibility: Dynamic Cross-Power Spectrum

As the previous discussion shows, the impulse-response function involves three timescales: gR changes at the Nyquist
rate; gD varies over the typical span of the impulse-response function τsc; and the time for the random variations of gR to
change is tsc. The dynamic cross-power spectrum provides a useful description for these different variations (Bracewell
2000). A single sample of the cross-power spectrum, when averaged over time less than tsc, has the characteristic scale
∆νsc ≈ 1/2πτsc, resulting from the finite span of the impulse-response function and the uncertainty principle. The
time variation of the cross-power spectrum over times t ≥ tsc captures the changes of gR.

Visibility Ṽ in the domain of frequency ν and time t is the product of the Fourier transforms of electric fields at
stations A and B (see Equation 1):

ṼAB(ν, t) = ẼA(ν, t)Ẽ∗B(ν, t) (20)

We suppose that each sample of the cross-spectrum is averaged over many realizations of the source electric field Esrc,
over a time short compared with tsc. This reduces noise from the source and backgrounds.

One may represent the visibility in four domains, linked by Fourier transforms of frequency ν to delay τ , and time
t to fringe rate f , as Figure 1 illustrates. In this paper we are particularly concerned with VAB(τ, t), visibility in

the domain of delay τ and time t. This is the Fourier transform of ṼAB(ν, t). The convolution theorem for Fourier
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transforms shows that V (τ, t) is the cross-correlation function of electric fields in the time domain:

VAB(τ, t) =

N/2−1∑
te=−N/2

EA(t+ te)E
∗
B(t+ te + τ) (21)

Here, te indexes individual samples of electric field, over a short interval near the index time of the measurement of
the cross-power spectrum, t.

Visibility in the delay-rate domain, conjugate to the frequency-time domain, takes the form:

V (τ, f) = F−1
ν→τ

[
Ft→f

[
Ṽ (ν, t)

]]
(22)

Searches for interference fringes are often conducted in this domain: because absolute calibration of delay and fringe
rate are usually impossible for very-long baseline interferometry, the peak of |V (τ, f)| can be used to determine them
(Thompson et al. 2007).

A.3.1. Visibility and Impulse-Response Function

Visibility depends on the separation ~b of stations A and B, as well as on delay and rate, or time and frequency. From
Equations 15 and 21, and the assumption that the electric field of the source Esrc is a stationary random variable
without correlation in time, we find that visibility in the delay domain is the cross-correlation function of g at the two
stations:

VAB(τ) = gA(κ) ⊗
κ→τ

gB(−κ) (23)

This leads to the expected form of V (τ): a spike at τ = 0, with average magnitude equal to the average correlation
ρAB ; and a broad component of width τsc, with random amplitude, and phase variations that increase with baseline
length, corresponding to the random character of gR and its decorrelation with increasing baseline. Equations 19 and
18 show that ρAB = 1 for gRA = gRB , and ρAB → 0 for uncorrelated gRA and gRB . Figures 2 and 3 show examples.

On intermediate baselines, the time structure of the correlation of gR is more complicated, in a way that depends
on the geometrical distribution of the paths that contribute to gR. For scattering material concentrated in a thin
screen, for example, the shortest-length paths result in small te in the impulse-response function, and also tend to
appear at small angles at the observer. Thus, at small delays correlation is high even for rather long baselines; whereas
at long delays correlation is poor even for shorter baselines. Thus, correlation between antennas should decrease at
later times te within gR. This correlation is imprecise for scattering material distributed along the line of sight, where
many deflections along the line of sight lead to a large time lag te, but little or no angular deflection at the observer’s
interferometer. Moreover, in the frequency domain, dynamic single-dish spectra can show slants and complicated
patterns (Hewish 1980; Stinebring et al. 2001), suggesting complicated correlations of time and delay in the observer
plane. Analysis of the visibility is thus easiest on very short baselines and very long ones.

Equations 22 and 23 provide the relation of the visibility in the frequency-time domain to the impulse-response
function:

ṼAB = (g̃D ⊗ g̃RA) (g̃∗D ⊗ g̃∗RB) (24)

Averaging the visibility over many scintillations yields the average visibility, ρAB :〈
ṼAB

〉
S
≡ ρAB (25)

A.3.2. Square Modulus of Visibility C and Correlation Function K

The average of V (τ) over many realizations of scintillations leaves the delta-function at the origin that corresponds
to the average visibility: 〈

VAB(τ)
〉
S

= 0 + ρAB δ
0
τ (26)

Here, δτ0 is the Kronecker delta-function, with value 1 if τ = 0 and 0 otherwise.
The secondary spectrum C(τ, f) may be defined as the square modulus of V (τ, f)9:

C(τ, f) = V (τ, f)V ∗(τ, f) = |V (τ, f)|2 (27)

This function provides information similar to |V (τ, f)|, shown in Figure 2, but is easier to deal with statistically.
Because C(τ, f) is the square modulus of the complex visibility V (τ, f), background noise adds noise to C, except for

9 Brisken et al. (2010) define the secondary spectrum as

V (τ, f)V (−τ,−f). For zero baselines Ṽ (ν, t) is real, so that
V (τ, f) = V ∗(−τ,−f), and our and their expressions are identical.
Their expression includes phase information in an elegant way for
their short baseline, where departures from zero phase are small.
For observations on long baselines, their expression is impractical

because identification of the origin of (τ, f) is not possible, as Fig-
ure 2 shows. Consequently, the pair (τ, f) and (−τ,−f) cannot be
combined reliably. They also use the accent ˜ for visibility in the
delay domain, although not for C; whereas we use the accent for
quantities in the frequency domain of ν.
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the central lag, where it may contribute a constant offset. Similarly, self-noise will add noise with an envelope that
follows the average form of C. This behavior is in contrast to that of correlation functions of single-dish quantities
such as the intensity, where noise can contribute to the mean correlation function.

Our long baselines fully resolve the scattered image. The phases of scintillation elements in Ṽ (ν, t) appear to be
random, and the phases of C(τ, f) show no discernible patterns. An inverse Fourier transform from fringe rate f to
time t leads to C(τ, t):

C(τ, t) = F−1
f→t [C(τ, f)] . (28)

Evaluated at the fringe rate fmax of its peak magnitude, the secondary spectrum C(τ, fmax) is a time average, that
approximates an average over realizations of the scintillation pattern of C(τ, t):〈

C(τ)
〉
S
≈ C(τ, fmax) (29)

The autocorrelation function of C is K:

K(∆τ) = C(τ, t)C(τ + ∆τ, t) (30)

Note that C(τ, t) appears without averaging in this expression. Conveniently, the correlation KRL(∆τ, t) between the
secondary spectra C in the right and left circular polarizations eliminates some effects of noise and interference, as
noted in Section 5.2.3.

The behaviors of C and K are simplest to describe on very short baselines, where gA(κ) = gB(κ) for all κ, and
ρAB = 1; and for very long baselines, where the random parts of gA(κ) and gB(κ) are completely uncorrelated, so that
ρAB = 0. If the correlation of the random parts of the propagation kernels ρAB is constant, then the ensemble-average
values of these correlation functions are:〈

C(τ)
〉
S

=
C2

N

(
G⊗G−

)
+
(
ρ2
AB

)
δτ0 (31)〈

K(∆τ)
〉
S

=
C2

N

(
G⊗G− ⊗G⊗G−

)
(1 + 4ρ2

AB) + 2

(
C2

N
+ ρ4

AB

)
δ∆τ
0 (32)

Again, δτ0 is the Kronecker delta-function, with value 1 if τ = 0 and 0 otherwise; and similarly for ∆τ . The time-
reversed pulse-broadening function is G−, given by G−(κ) = G(−κ). The constant C2 is the mean square of G:
C2 =

∑
te
G2.

B. TWO EXPONENTIALS

We consider a situation where the impulse-response function is the sum of two exponentials with different time
constants k1 and k2, with a rapid rise from G = 0 at t = 0. As we discuss below, this may result in a variety of
circumstances. We parametrize the impulse-response function:

G(τ) =

{
A1k1e

−k1τ +A2k2e
−k2τ τ ≥ 0

0 τ < 0
(33)

In the text, we also make use of the inverse scales τ1 = 1/k1 and τ2 = 1/k2; these can provide better physical insight.
The autocorrelation of G provides the form for 〈C(τ)〉S , the mean square visibility in the delay-time domain, as given
by Equation 31. For this impulse-response function, under the assumption that the baseline is so long that ρAB = 0,
this takes the form:

N

C2

〈
C(∆τ)

〉
S

= A1k1

(
A2k2

k1 + k2
+
A1

2

)
e−k1|∆τ | +A2k2

(
A1k1

k1 + k2
+
A2

2

)
e−k2|∆τ | (34)

The autocorrelation function K of the mean square visibility for this impulse-response function then takes the form:

N

C2

〈
K(|∆τ |)

〉
S

= (α1k1(1 + k1 |∆τ |)− βk2) e−k1|∆τ | + (α2k2(1 + k2 |∆τ |) + βk1) e−k2|∆τ | (35)

+
(

((α1 − β)k1 + (α2 + β)k2) δ∆τ
0

where again δ∆τ
0 is the Kronecker delta function, and:

α1 = A2
1

(
A1

2
+

A2k2

k1 + k2

)2

(36)

α2 = A2
2

(
A2

2
+

A1k1

k1 + k2

)2

β =
A1A2k1k2(2A2k2 +A1(k1 + k2))(2A1k1 +A2(k1 + k2))

(k1 − k2)(k1 + k2)3
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Thus, the two exponential scales 1/k1, 1/k2 appear again, in K, as do the weights A1, A2.

C. ANISOTROPIC SCATTERING IN A THIN SCREEN

An observer sees an anisotropic distribution of radiation from a screen at distance D from the observer. The
probability of receiving radiation from the screen at position (θx, θy) is:

P (θx, θy) =
1

2πσxσy
exp

{
−1

2

((
θx
σx

)2

+

(
θy
σy

)2
)}

dθx dθy (37)

We suppose without loss of generality that σy > σx. If the source is at infinite distance beyond the screen, the delay
τ along this path (ignoring any contribution from the screen) is:

cτ = D
(
θ2
x + θ2

y

)
(38)

where c is the speed of light. If the source is at distance R beyond the screen, then D is replaced by RD/(R + D)
in this and subsequent equations. We convert the distribution of angles in Equation 37 to coordinates (τ, φ), where
φ = arctan(θy/θx). The resulting distribution of (τ, φ) is:

P (τ, φ) dφ dτ =
√

1 + α2
c

πDσ2
y

exp

{
− cτ

2Dσ2
y

(
1 + α2 cos2 φ

)}
dτ dφ (39)

where α2 = σ2
y/σ

2
x − 1 parametrizes the anisotropy. We integrate over φ to find the pulse-broadening function:

G(τ) dτ =

∫ 2π

0

P (τ, φ) dφ dτ (40)

Thus,

G(τ) dτ =
√

1 + α2 exp

{
− (2 + α2)

2

τ

τ2

}
I0

(
α2

2

τ

τ2

)
dτ

τ2
(41)

Here, I0 is the regular modified Bessel function of order 0, and cτ2 = 2Dσ2
y. Note that for α → 0, this distribution

becomes the familiar exponential distribution, with scale τ2, as expected for σx = σy. Rickett et al. (2009) present a
similar expression.

In the case of α > 0, at small τ the distribution has the limit:

lim
τ→0

G(τ) dτ →
√

1 + α2 exp

{
− (2 + α2)

2

τ

τ2

}
dτ

τ2
(42)

At large values,

lim
u→∞

I0(u)→
√

1

2πu
eu (43)

so that

lim
τ→∞

G(τ) dτ →
√

1 + α2

√
1

2π(2 + α2)

τ2
τ

exp

{
− τ

τ2

}
dτ

τ2
(44)

At a particular scale τ , the logarithmic derivative of G(τ) is 1/τ2, although the coefficient depends weakly on τ . Thus,
G(τ) exhibits two exponential scales: τ2 at large τ , and τ1 = τ2/(1 + α2/2) at small τ . The relative strength of the
scales is about

A1

A2
=

√
1 + α2

2π(2 + α2)
(45)

near the larger scale τ2, with the larger scale being the weaker.
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