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ABSTRACT
We carried out observations of pulsar PSR B1919+21 at 324 MHz to study the distribution of
interstellar plasma in the direction of this pulsar. We used the RadioAstron (RA) space radio
telescope, together with two ground telescopes: Westerbork (WB) and Green Bank (GB).
The maximum baseline projection for the space–ground interferometer was about 60 000 km.
We show that interstellar scintillation of this pulsar consists of two components: diffractive
scintillations from inhomogeneities in a layer of turbulent plasma at a distance z1 = 440 pc
from the observer or homogeneously distributed scattering material to the pulsar; and weak
scintillations from a screen located near the observer at z2 = 0.14 ± 0.05 pc. Furthermore,
in the direction to the pulsar we detected a prism that deflects radiation, leading to a shift in
observed source position. We show that the influence of the ionosphere can be ignored for
the space–ground baseline. Analysis of the spatial coherence function for the space–ground
baseline (RA–GB) yielded a scattering angle in the observer plane of θ scat = 0.7 mas. An
analysis of the time–frequency correlation function for weak scintillations yielded an angle
of refraction in the direction to the pulsar θ ref, 0 = 110 ms and a distance to the prism
zprism ≤ 2 pc.
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1 IN T RO D U C T I O N

Fluctuations of electron density in the interstellar plasma scatter
radio waves from astronomical objects. An observer at the Earth
detects a signal that is a convolution of the initial signal and a ker-
nel that describes scattering in the interstellar plasma (Gwinn &
Johnson 2011). Several effects are observed for pulsars correspond-
ing to the scattering of the radio emission: intensity modulation
in frequency and in time (scintillations), pulse broadening, angular
broadening and signal dispersion in frequency.

A space radio telescope such as RadioAstron provides a great
opportunity to measure the parameters of scattering. Separation of
the effects of close and distant scattering material requires high
spatial resolution. RadioAstron provides the space element of this
interferometer for our observations. Technical and measured param-
eters of the RadioAstron mission have been described by Avdeev
et al. (2012) and Kardashev et al. (2013) We observed several
close pulsars in the Early Science program of RadioAstron (RAES),
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including pulsars B0950+08 and B1919+21. First results, pub-
lished in the article of Smirnova et al. (2014), show that a layer of
plasma located very close to the Earth, at 4.4–16.4 pc, is primarily
responsible for scintillation of B0950+08. First indications that the
nearest interstellar medium is responsible for the scintillations of
pulsars B0950+08 and J0437−47 were discussed in earlier articles
(Smirnova & Shishov 2008; Smirnova, Gwinn & Shishov 2006,
see also Bhat et al. 2016). These pulsars have dispersion measures
among the lowest observed, indicating a low column density of
the plasma. A scattering medium located at a distance of about
10 pc from the Sun is also responsible for the variability of some
quasars over periods of about an hour, when observed at centime-
tre wavelengths (Kedziora-Chudczer et al. 1997; Dennett-Thorpe &
deBruyn 2002, 2003; Bignall et al. 2003, 2006; Jauncey et al. 2003).
These observations of scattering of close pulsars and short-period
variability of quasars indicate the existence of a nearby interstellar
plasma component that has properties different from those of more
distant plasma components.

The aim of the study reported here is to investigate the spatial
distribution of the interstellar plasma towards the pulsar B1919+21.
We show that two isolated layers of interstellar plasma lie in this
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Figure 1. Dynamic spectrum of PSR B1919+21 at observing frequency 324 MHz, for the ground baseline Green Bank–Westerbork (GB–WB). The grey-scale
shows normalized amplitude.

direction, one of which is localized at a distance of only 0.14 pc.
Pulsar B1919+21 is a strong pulsar. Its period is P1 = 1.3373 s.
It lies at Galactic latitude 3.◦5 and longitude 55.◦8. Its dispersion
measure is DM = 12.43 pc cm−3. The Cordes & Lazio (2002)
model indicates that the pulsar distance is 1 kpc. Measurements
of this pulsar’s proper motion yielded μα = 17 ± 4 mas yr−1 and
μδ = 32 ± 6 mas yr−1 (Zou et al. 2005).

2 O BSERVATIONS

We conducted observations of PSR B1919+21 at an observing
frequency of 324 MHz on 2012 July 4, using the RadioAstron
10-m space radio telescope together with the 110-m Green Bank
(GBT) and 14 × 25-m Westerbork (WSRT) telescopes. Data were
transferred from RadioAstron in real time to Puschino, where they
were recorded using the RadioAstron Digital Recorder (RDR:
Andrianov et al. 2014), developed at the Astro-Space Center
of the Lebedeev Physical Institute (ASC). The Mark5B record-
ing system was used for the ground telescopes. All telescopes
recorded the frequency band from 316–332 MHz, with one-bit
quantization for space telescope data and two-bit quantization for
ground telescopes. Data were recorded for 4170 s, divided into
scans of 421 P1 (563 s) and subintervals of 26 P1 (about 35 s).
The primary data processing was done using the ASC correlator
(Andrianov et al. 2014) with incoherent dedispersion. Data were
correlated with 512 spectral channels in two selected windows:
on-pulse and off-pulse; the width of each window was 40 ms
(3 per cent of the pulsar period). An on-pulse window was cen-
tred on the maximum of the average profile and an off-pulse
window was selected at half the pulsar period from the on-pulse
window. The projected space–ground interferometer baseline was
about 60 000 km.

3 DATA PRO CESSI NG AND ANALYSI S

3.1 Dynamic spectrum and correlation functions

3.1.1 Dynamic spectrum

We formed complex cross-spectra between pairs of telescopes for
all scans, in on- and off-pulse windows. In some cases, to increase
the sensitivity, we averaged cross-spectra over four pulsar periods.
To obtain dynamic spectra, we calculated the modulus of the cross-
spectra and corrected for the receiver bandpass using the off-pulse
spectra. To reduce the impact of broad-band intensity variations
of the pulsar from pulse to pulse, we normalized each spectrum
by its standard deviation, σ (t). Fig. 1 shows the normalized dy-
namic spectrum of scintillation of pulsar B1919+21 for the Green
Bank–Westerbork ground interferometer (GB–WB). We see clearly
expressed large-scale sloping structures (slanting features), with
scales of df = 1–1.5 MHz in frequency and dt ≈ 1000 s in time.
Diffractive spots are strongly extended along the line f = (df/dt)t.
This drift indicates that refraction by a cosmic prism determines the
structure of scintillation in the frequency–time domain. The regular
dark bands along the frequency axis represent intervals when the
signal was not recorded and were filled with values of zero. The
narrower grey bands show the pulse-to-pulse variability intrinsic to
the pulsar.

3.1.2 Drift and dual frequency scales

To determine the drift rate of the diffractive structure, we calculated
the position of the maximum of the mean cross-correlation between
spectra separated in time by lags kP1, where k = 1, 2, . . . and P1 is
a pulse period in s. We found three separated bands with the slope
�f/�t = 1.5 MHz/1000 s. We obtained this slope by a least-squares
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Figure 2. Spectra of individual pulses of the pulsar, separated in time by
the specified number of seconds from the bottom spectrum.

Figure 3. Autocorrelation functions (ACF) averaged over the entire ob-
servation time for space–ground (RA–GB, upper) and ground (GB–WB,
lower) baselines. Expression (10) was used to calculate the ACF for the
space–ground baseline.

fit to the positions of maxima. Fig. 2 shows spectra of several strong
pulses separated in time, with time increasing from bottom to top
in the figure.

Two scales of structure are visible in the spectra: small-
scale structure with a frequency scale of about 400 kHz and large-
scale structure with frequency scale of about 1500 kHz. These scales
are the approximate full width at half-maximum amplitude of the
features. At smaller separations in time (as in spectra ‘a’ and ‘b’ in
the figure, separated by 11 s), the fine structure is the same. Over
longer separations (as in spectra ‘b’ and ‘c’, separated by 200 s)
the fine structure changes, but the large-scale structure retains its
shape. The modulation index, defined as m(t) = σ (t)/〈I〉f(t), varies
from 0.7–1.0 on a time-scale of the order of 500 s. This variation
indicates that the statistics are not sufficient to determine the correct
value of m(t). However, the fact that the modulation index is close
to 1 confirms that the scattering is strong.

3.1.3 Determination of frequency scales

A correlation analysis of the dynamic spectra provides the scales of
scintillation in frequency, �fdif. Fig. 3 shows the average autocorre-
lation functions (ACF) as a function of frequency lag. The ACF was
averaged over the entire observation. For our ground baseline, we
calculated the ACF using the usual procedure, because the influence
of noise was small and because it was necessary to eliminate the in-
fluence of the ionosphere, as discussed below. For the space–ground

Figure 4. The dependence of the average cross-correlation coefficient
between pairs of spectra spaced by the corresponding time interval
�t = 4P1k, k = 1, 2, . . . , for space–ground (upper) and ground (lower)
baselines.

baseline, we calculated the ACF as the modulus of the average cor-
relation function of the complex cross-spectra. The corresponding
expressions are presented in Section 3.2. This procedure is required
when the contribution of the noise is greater than or comparable
with the signal level and when ionospheric effects are small, as was
the case for our space–ground baseline. Otherwise, the contribution
of noise will distort the ACF.

The visible break in the slope of the ACF near a lag of ±300 kHz
for the ground baseline (GB–WB: Fig. 3, lower) indicates the pres-
ence of structure on two scales. No break appears in the ACF for
the space–Earth baseline: its shape corresponds to the small-scale
structure only. To determine the widths and relative amplitudes
of these structures, we fit the ground baseline with a sum of ex-
ponential and Gaussian functions. We obtained frequency scales of
�fdif = 330 kHz and �fwide = 700 kHz (half width at half-maximum
amplitude), with amplitudes of 0.84 and 0.15 for the small- and
large-scale structures, respectively. As will be shown below in
Section 4, the small-scale structures arise from scattering of ra-
diation in the distant layer of the turbulent medium as diffractive
scintillation and the large-scale structures in the layer located close
to the observer as weak scintillation.

3.1.4 Determination of time-scale

Fig. 4 shows the average cross-correlation coefficient between pairs
of spectra as a function of time for space–ground (upper) and ground
(lower) baselines. The time separations are �t = 4P1k, where k = 1,
2, .... Both baselines show the same scintillation scale: �tdif = 290 s,
expressed as a time lag of 1/e of the peak amplitude.

3.2 Theoretical relations, ionospheric effects, correlation
functions

Much of our analysis in this article follows that of Smirnova et al.
(2014) in general outline, but here we describe new details con-
nected with ionospheric effects and use different definitions for the
correlation functions. Let h(f, t) be the spectrum of the field of ini-
tial pulsar emission in the absence of any turbulent medium, where
f = ν − ν0 is the offset of the observing frequency ν from the
band centre ν0 = 324 MHz and t is time. This spectrum h(f, t) also
includes instrumental modulation of emission in the passbands of
the receivers. After propagation through the turbulent interstellar
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medium, the spectrum of the electric field for one antenna can be
represented as

E(ρ, f , t) = h(f , t)u(ρ, f , t) exp [−iS(ρ, f , t)] , (1)

where the modulation coefficient u(ρ, f , t) is determined by prop-
agation through the interstellar medium and ρ is the spatial coor-
dinate in the observer plane, perpendicular to the line of sight. The
phase S(ρ, f , t) is determined by the ionosphere and cosmic prism.
Multiplying E(ρ, f , t) by E∗(ρ + b, f , t) and averaging over the
statistics of the source, we obtain the quasi-instantaneous response
of an interferometer with a baseline b, the cross-spectrum of the
electric field:

I (ρ, ρ + b, f , t) = E(ρ, f , t)E∗(ρ + b, f , t)

= H (f , t)j (ρ, ρ + b, f , t)

× exp[−i�S(ρ, b, f , t)], (2)

where

j (ρ, ρ + b, f , t) = u(ρ, f , t)u∗(ρ + b, f , t), (3)

H (f , t) = 〈h(f , t)h∗(f , t)〉h. (4)

The subscript h indicates averaging over the statistics of the noise-
like electric field of the source. We assume that the intrinsic
spectrum of the source, and of our instrumental response, is flat:
H(f, t) = 1. The phase difference between the antennas at either
end of the baseline �S(ρ, f , t) consists of two components, from
interstellar refraction and the ionosphere:

�S(ρ, b, f , t) = �Sion(ρ, b, f , t) + �Sref (b, f ). (5)

For a fixed baseline, the refractive component of the interferometer
phase, �Sref (b, f ) depends only on f:

�Sref (b, f ) = 2π

(
f

c

)
b · �ref,0. (6)

Here �ref,0 is the refraction angle at frequency ν0.
The ionospheric component can be represented as

�Sion(ρ, b, f , t) = �Sion(ρ, b, f = 0, t) + f

ν0
�Sion,0

+ f

ν0

(t − t0)

T
�Sion,1,

�Sion,0 = �Sion(ρ, b, f = 0, t = t0),

�Sion,1 = T
d

dt
[�Sion(ρ, b, f = 0, t)] |t=t0 , (7)

where T is the time span of the observations and t0 is the time at the
middle.

Fig. 5 shows the values of the real and imaginary parts of the
interferometer response for one selected frequency channel as a
function of time: Re[I(ρ, ρ + b, f, t)] (upper) and Im[I(ρ, ρ + b, f,
t)] (lower). In addition to the amplitude fluctuations corresponding
to the dynamic spectrum, we see periodic fluctuations with a char-
acteristic period of about 70 s, phase-shifted by 90◦. Changes of the
ionosphere in time cause these fluctuations. Therefore, to analyse
the data from the ground interferometer we must work with the
moduli of the cross-spectra. For the space–ground interferometer,
the influence of the ionosphere was much smaller, as will be shown
below, and so the data processing used the complex cross-spectra.

Multiplying I (ρ, ρ + b, f , t) by its complex conjugate at fre-
quency f + �f (where �f = frequency shift) and averaging over

Figure 5. Dependences of the real (upper) and imaginary (lower) parts
of the complex cross-spectrum in time for frequency channel 100, for the
Green Bank–Westerbork baseline (GB–WB). Data were not recorded during
intervals indicated as zero amplitude.

time and frequency, we obtain

〈I (ρ, ρ + b, f , t)I ∗(ρ, ρ + b, f + �f , t)〉
= 〈j (ρ, ρ + b, f , t)j ∗(ρ, ρ + b, f + �f , t)〉ϕ(�f )

× exp[−i(�f /ν0)[�Sion,0 + �Sref,0], (8)

where

ϕ(�f ) =
〈

exp

[
−i

(
�f

ν0

)
(t − t0)

T
�Sion,1

]〉
t

= sin
[
(�f /2ν0)�Sion,1

]
(�f /2ν0)�Sion,1

. (9)

In equation (9), the average corresponds to an integration over t
from (t0 − T/2) to (t0 + T/2). The phase difference at frequency ν0

is �Sref, 0.
The modulus of the averaged correlation in frequency f of the

interferometer response I is

J1(b, �f ) = |〈I (ρ, ρ + b, f , t)I ∗(ρ, ρ + b, f + �f , t)〉|. (10)

In contrast, the averaged modulus of the correlation in frequency of
I is

J2(b, �f ) = 〈|I (ρ, ρ + b, f , t)I ∗(ρ, ρ + b, f + �f , t)|〉
= 〈j (ρ, ρ + b, f , t)j ∗(ρ, ρ + b, f + �f , t)〉. (11)

Fig. 3 (upper panel) shows the modulus of the averaged correla-
tion function of I for the space–ground interferometer, as defined
in equation (10). The imaginary part of the second moment divided
by its modulus is ϕ1(�f). The function ϕ1(�f) is proportional to
ϕ(�f)∗sin [ − �f/ν0(�Sion, 0 + �Sref, 0)].

Fig. 6 shows values of J2(�f) and ϕ1(�f) for the ground inter-
ferometer and ϕ1(�f) for the space–ground interferometer. We see
that for the ground interferometer the ionospheric phase is larger
and varies more rapidly with frequency than for the space–ground
interferometer.

The value of ϕ1(�f) is zero at �f = 0, as defined by the factor
sin [ − �f/ν0(�Sion, 0 + �Sref, 0)]. However, the zeros of ϕ1(�f) for
the ground interferometer at �f = ±3 MHz are defined by ϕ(�f). If
we set the argument of ϕ in equation (9) equal to π at �f = 3 MHz,
we obtain �Sion, 1 ≈ 600 radians for the ground interferometer and
�Sion, 1 ≤ 200 radians for the space–ground interferometer. From
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Figure 6. (a) Average modulus of the correlation of I with frequency offset
f (equation 11); (b) ϕ1(f), the ratio of the imaginary part of the correlation to
its modulus for the ground interferometer (GB–WB) as a function of f; (c)
the same ratio ϕ1(f) for the space–ground interferometer (RA–GB).

these values, it follows that the response of the ground interfer-
ometer is greatly distorted by the ionospheric phase, but the signal
amplitude greatly exceeds the noise. Thus, we use equation (11)
to calculate the correlation function of amplitude fluctuations for
the ground baseline. For the space–ground interferometer, the sit-
uation is reversed: the noise exceeds the signal and we cannot use
equation (11). However, we can neglect the phase distortion of the
interferometer response and use equation (10) to determine the cor-
relation functions of amplitude fluctuations on the space–ground
baseline.

3.3 Structure functions of the interferometer response
fluctuations

Structure functions provide insight into the correlation function, as
discussed in earlier articles (Smirnova et al. 2014). For the space–
ground interferometer on baseline bs, we calculate the structure
function in frequency difference �f and time difference �t us-
ing J1(bs, �f = 0, �t = 0) − J1(bs, �f , �t). We normalize this
expression by J1(bs, �f = 0, �t = 0) − J1(bs, �f = �f ∗, �t =
0), where �f∗ 	 �fdif. Hence we obtain the structure function for
the space–ground interferometer:

SFs(bs, �f , �t)

= (J1(bs,�f = 0, �t = 0) − J1(bs, �f , �t))

(J1(bs, �f = 0, �t = 0) − J1(bs,�f ∗, �t = 0))
. (12)

Similarly, the structure function for the ground interferometer with
baseline bg yields the normalized structure function

SFg(bg, �f , �t)

=
(
J2(bg,�f = 0, �t = 0) − J2(bg, �f , �t)

)
(
J2(bg, �f = 0, �t = 0) − J2(bg, �f ∗, �t = 0)

) . (13)

Fig. 7 shows average time (upper) and frequency (lower) structure
functions (SF) of intensity variations for our ground baseline on
log–log axes.

An arrow marks the break in the structure function at a frequency
lag of 300 kHz. We fit power laws to the structure functions:

SF (�f ) = 1
2 (�f /�fdif )

βf ,

SF (�t) = 1
2 (�t/�tdif )

βt . (14)

Figure 7. Average time (upper) and frequency (lower) structure functions
of intensity variations (SF) for the Green Bank–Westerbork (GB–WB) base-
line, presented on a log–log scale. The arrow marks the frequency lag of the
observed break in the structure function, 300 kHz.

Figure 8. Normalized frequency structure functions of intensity variations
for ground (GB–WB) and space–ground (RA–GB) baselines at zero time
shift.

We performed linear fits to the logarithmic data for these two
structure functions over the ranges �tsamp < �t < �tdif and
�fsamp < �f < �fdif, respectively, where �tsamp and �fsamp are
the sampling intervals in time and frequency for our data. We ob-
tained β f = 0.90 ± 0.03 for the frequency structure function and
β t = 1.73 ± 0.02 for the time structure function. The resulting rela-
tion between frequency and time structure functions β f = β t/2 cor-
responds to a diffractive model for scintillation (Shishov et al. 2003).
The power-law index n of the spectrum of density inhomogeneities
responsible for scattering is connected with the index of SF(t)
through the relation n = β t + 2 = 3.73 (Shishov et al. 2003).

Fig. 8 shows the average frequency structure functions for the
ground (line) and space–ground (dashed line) baselines at zero time
shift. Evidently the levels of the SF differ by about 0.2–0.3. This
corresponds to the relative contributions of the two frequency scales
in the scintillation spectra to the ground baseline, as seen in Figs 2
and 3 and discussed in Section 3.1.3 above. The ratio of their am-
plitudes is consistent with our fit to two components in the average
frequency correlation function for the ground baseline. The space–
ground baseline shows no such break in the structure function in
Fig. 8, or what would be the corresponding structure in the corre-
lation function shown in Fig. 3. Rather, the space–ground structure
function displays only the narrower frequency-scale component.
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Figure 9. Average structure functions of intensity variations for the Green
Bank–Westerbork baseline, calculated from spectra for different time shifts:
black line for �t = 4P1; dashed line for �t = 200P1; dash–dotted line for
�t = 320P1; grey line for �t = 640P1.

Fig. 9 shows the mean frequency structure functions for the
ground baseline at different time lags: 4P1 (squares), 200P1 (cir-
cles), 320P1 (line) and 640P1 (triangles). With an increasing time
shift between spectra, the amplitude of the structure function de-
creases and its minimum is displaced. When �t = 200P1 (267 s)
the structure function still shows a small contribution of small-scale
structure, whereas at �t = 640P1 (856 s) we see only one compo-
nent, the centre of which is shifted to 1100 kHz, with an amplitude
of 0.15. Weak scintillation alone would produce a wide-bandwidth
pattern, but the cosmic prism slants the pattern in both frequency,
by dispersion, and time, by a spatial displacement that the motion
of the source converts to the time domain. Thus, a frequency shift
compensates for the time offset, as Fig. 9 displays. This effect is also
clearly visible in the dynamic spectrum (Fig. 1) as was discussed
in Section 3.1.2. The drift in frequency at rate df/dt = 1.1 MHz
over 856 s = 1.3 MHz/1000 s is close to that obtained in Sec-
tion 3.1.2 above, df/dt = 1.5 MHz/1000 s. We will adopt the rate
of 1.5 MHz/1000 s as more accurate, because the structure function
for large time shifts is weak and has large variations.

For the space–ground baseline (RA–GB), a time shift of the
structure function produces only a decrease in the amplitude of the
structure function, without displacement of its minimum, even with
time shifts as large as 800 s. This is consistent with the absence of
a wide structure on a long baseline. We conclude further that the
refraction causing the displacement of the structure function takes
place behind the screen responsible for diffractive scintillation.

3.4 Spatial coherence function

According to equation (10), J1(b, �f ) is the second moment
of j (ρ, ρ + b, f , t) and is also the fourth moment of the field
u(ρ, f , t). As Prokhorov et al. (1975) showed, the fourth moment
of the field can be expressed through the second moments and, in
the regime of strong scintillations,

J1(b, �f ) = |〈j (ρ, ρ + b, f , t)j ∗(ρ, ρ + b, f + �f , t)〉|
= |Bu(f )|2 + |Bu(b)|2. (15)

Here Bu(b) is the spatial field-coherence function at a single average
flux and Bu(f) is the frequency correlation function of fluctuations
in flux, which is independent of baseline. If the spatial coordinate
in the phase screen plane is �ρ, then (Prokhorov et al. 1975)

Bu(�ρ) = exp
[− 1

2 Ds(�ρ)
]
, (16)

where Ds(�ρ) is the spatial structure function of phase fluctua-
tions:

Ds(�ρ) = 〈φ(x + �ρ) − φ(x)〉x, (17)

where φ(x) is the screen phase at x. In the case of a spherical wave
at the observer plane, we have

Ds(�ρ) =
z∫

0

D (�ρ) dz′, (18)

where D is a gradient of Ds(�ρ) along the z-axis and

�ρ = (z − z′)
z

b.

The integration is from the observer at z′ = 0 to the pulsar at z′ = z.
For the space–ground interferometer, we used equation (15) with

b = bs, where bs is the interferometer baseline. According to equa-
tion (15), for �f = 0 we have J1(bs,�f = 0) = 1 + |Bu(bs)|2
and for �f > �fdif we have J1(bs, �f > �fdif ) = |Bu(bs)|2. As
displayed in Fig. 3, we find J1(bs,�f = 0) = 1.4 × 10−4 and
J1(bs, �f > �fdif ) = 2.4 × 10−5 at �f = 2 MHz. Thus,

J1(bs, �f > �fdif )

J1(bs, �f = 0)
= |Bu(bs)|2

1 + |Bu(bs)|2
= 0.17. (19)

From this equation, we obtain

|Bu(bs)|2 = 0.20. (20)

From the analogous calculation for the ground interferometer
(Fig. 6a), we obtain

J2(bg, �f > �fdif )

J2(bg, �f = 0)
= |Bu(bg)|2

[1 + |Bu(bg)|2]
= 0.50. (21)

This implies

|Bu(bg)|2 = 1. (22)

This result implies that the ground interferometer does not resolve
the scattering disc; mathematically, it means that |bg| � 1/kθ scat.

4 MO D E L O F T H E TU R BU L E N T
I NTERSTELLAR MEDI UM

Our analysis leads to the following model for the scintillation. The
material responsible for scintillation of PSR B1919+21 consists of
two components: strong diffractive scattering in a layer of turbulent
density inhomogeneities at a distance of z1, which is responsible
for the small-scale structure in the spectra, and weak and refractive
scattering in a layer of turbulent density inhomogeneities close to
the observer at a distance of z2, which is responsible for the large-
scale structure. The spatial structure function of phase fluctuations
Ds(�ρ), as described in Section 3.4 above, characterizes the two
screens.

We describe here a physical model for the distribution of scat-
tering material that explains our observations. Suppose we have a
cosmic prism, located close to the observer at a distance of zprism,
which deflects the beam with an angle of refraction �θ ref . Let θ ref,0

be the resulting shift of source position visible in the observer plane
at frequency ν0. The difference in refraction angle at a nearby fre-
quency ν0 + f is (Shishov et al. 2003)

�θ ref = 2
f

ν0
θ ref,0. (23)

Suppose further that phase screen 2 is located close to the observer
and that the distance between the observer and phase screen 2 is
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Figure 10. Schematic illustration of model geometry, showing radiation at a
lower frequency f (dark line) scattered by the strongly scattered screen 1 into
a range of angles (dark shading), deflected by the cosmic prism and scattered
further by the weakly scattering screen 2 before reaching the observer plane.
The lighter path and shading shows a higher frequency f + �f.

much smaller than z, the distance between the observer and the
pulsar:

z2 � z. (24)

The cosmic prism is also located close to the observer, but a little
bit further than phase screen 2:

z2 < zprism � z. (25)

Phase screen 1 is located much further away along the line of sight, at
a distance of order z/2. The structure functions of phase fluctuations
for the phase screens then have the model forms (Smirnova, Shishov
& Stinebring 1998)

DS,1(�ρ) = (kθscat,1|�ρ|)α1 , (26)

DS,2(�ρ) = (kθscat,2|�ρ|)α2 . (27)

Thus, our model for the turbulent plasma towards the pul-
sar is characterized by the following parameters: θ ref,0, θscat,1,

θscat,2, α1, α2, z1, z2, zprism. Fig. 10 illustrates the geometry.
This model has similar structure to that used for our studies of the

scintillations of pulsar B0950+08 (Smirnova et al. 2014). However,
in the present case the distance to phase screen 1 is considerably
greater and the characteristic scattering angle θ scat, 1 is significantly
larger. Thus, for pulsar B1919+21 the scintillations are strong
and saturated, with modulation index close to 1, as discussed in
Section 3.1.2. Accordingly, we apply the theory of saturated scin-
tillations (Prokhorov et al. 1975). In this case, the field coherence
function Bu(b) is given by

〈j (ρ, ρ + b, f , t)〉 = 〈
u(ρ, f , t)u∗(ρ + b, f , t)

〉
= Bu(b)

= exp
[− 1

2 DS,1

( (z−z1)
z

b
) − 1

2 DS,2(b)
]
. (28)

For the distant screen 1, the sphericity of the wavefront at the screen
is important and the conversion of the baseline in the observer’s
plane b to the distance between the beams in the phase screen plane
is given by the equation

�ρ1,b = (z − z1)

z
b. (29)

For the closer phase screen 2, we can neglect the sphericity factor.

For saturated scintillations, the second moment j (ρ, ρ + b, f , t)
consists of two components: diffractive and refractive (Prokhorov
et al. 1975). The diffractive component can be represented as

J (b, �f , �t)dif = 〈j (ρ, ρ + b, f , t)

× j ∗(ρ, ρ + b, f + �f , t + �t)〉dif

= 〈j (ρ, ρ + b, f , t)〉〈j ∗(ρ, ρ + b, f , t)〉
+ Bj (�f ,�t). (30)

Here Bj(�f, �t) is a frequency–time correlation function of flux
fluctuations independent of the projected baseline:

Bj (�f , �t) = 〈u(ρ, f , t)u∗(ρ, f + �f , t + �t)〉
×〈u(ρ + b, f , t)u∗(ρ + b, f + �f , t + �t)〉

= |Bu(�f ,�t)|2. (31)

Pulsar motion at a transverse speed V p is primarily responsible
for variations of flux density with time, producing scintillations
from phase screen 1 at distance z1. The pulsar motion leads to a
shift of the beam in the plane of the phase screen:

�ρ1,t = z1

z
V p�t. (32)

For �f = 0, we have

Bu(�t) = exp
[− 1

2 DS,1(�ρ1,t )
]

= exp

[
− 1

2

(
�t

�tdif

)α1
]

, (33)

with

�tdif = z

z1k θscat,1|V p| . (34)

Correspondingly,

Bj (�t) = exp[−DS,1(�ρ1,t )] = exp[−(�t/�tdif )
α1 ]. (35)

For a ground baseline, the projected length bg is much smaller
that the coherence scale of the field 1/kθ scat, 1:

bg � 1

kθscat,1
(36)

and, correspondingly,

Bu(ρ, ρ + bg) = 1. (37)

For a space–ground baseline, the projected length bs is larger than
the coherence scale of the field:

bs >
1

kθscat,1
(38)

and, correspondingly,

Bu(ρ, ρ + bs) = exp

[
−1

2

(
z − z1

z
· bs

kθscat,1

)α1
]

. (39)

Here, [(z − z1)/z] is the sphericity factor, which converts the baseline
bs into the distance between beams in the phase screen plane at
distance z1. Comparison of J (b, �f = 0) and J (b, �f > �fdif )
allows us to estimate the spatial coherence function (interferometer
visibility), as in Section 3.4 above.

5 R ESULTS

As mentioned above, the time correlation function of interferometer
response fluctuations is determined primarily by pulsar motion with
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transverse velocity V p. Pulsar motion shifts the beam in the plane
of phase screen 1 by �ρ1,t (equation 32). The temporal correlation
function of flux density shown in Fig. 4 yields �tdif = 290 s. We
fitted the model given by equation (35) to the shift of the struc-
ture function shown in Fig. 7 to find the index α1. The fit yielded
α1 = 1.73. The normalized spatial correlation function of flux fluc-
tuations for the space–ground baseline bs is (equation 20) |Bu(bs|2 =
0.20).

From the projected length of the ground–space baseline
bs = 6 × 109 cm we find bdif:

bdif = z

(z − z1)

1

kθscat,1
= 4.6 × 109 cm. (40)

Using the measured proper motion of μα = 17 ± 4 mas yr−1,
μδ = 32 ± 6 mas yr−1 (Zou et al. 2005) and an assumed dis-
tance to the pulsar z = 1 kpc (Cordes & Lazio 2002), we ob-
tain a pulsar tangential velocity V p = 200 km s−1. Comparison of∣∣V p

∣∣ �tdif with bdif yields z1/(z − z1) = bdif/(| �Vp|�tdif ) = 0.78.
Hence, z1 = 0.44 z = 440 pc. Therefore, the screen is located ap-
proximately halfway between the pulsar and the observer. From
knowledge of bdif and z1, we obtain θ scat, 1 = 1.2 mas. In the ob-
server plane, θobs, 1 = [(z − z1)/z]θ scat, 1 = 0.7 mas.

The normalized frequency correlation function R(�f) of intensity
variations is determined by the diffractive scintillations. Ostashov
& Shishov (1977) found that R(�f) is

R(�f ) = 1 − 1
2

(
�f

�fdif

)α1/2

, �f < 2�fdif,

�fdif = c

4πA(α1) z (z1/(z − z1)) (θobs,1)2
. (41)

Taking α1 = 1.73, we find, for the constant A,

A(α1) = [2
(1 + α1/2) cos(πα1/4)]2/α1 ≈ 0.34, (42)

where 
 is the complete gamma function. Using our estimated
values for z1 and θ scat, 1, we find �fdif = 290 kHz, which coincides
very well with our measured value �fdif = 330 kHz.

If we suppose the scattering material is homogeneously dis-
tributed between observer and pulsar, then the frequency diffraction
scale will be determined by the relations

�fdif = c

4πB(α1)z(θobs,1)2
, (43)

B(α1) =
[

2(
(1 + α1/2))3 cos(πα1/4)(1 + α1)


(2 + α1)

]2/α1

≈ 0.18. (44)

We obtain �fdif = 430 kHz, which also coincides with the ob-
servations. Thus, our measurement of �fdif agrees with either a
thin-screen model (located at z1 ≈ 0.44z) or homogeneously dis-
tributed scattering material, to about the 30 per cent accuracy of our
measurement. The consistency of the measured and calculated fre-
quency scales suggests that the assumed pulsar distance of z = 1 kpc
corresponds to the actual distance.

The spatial correlation function for weak scintillations from
the inhomogeneities of layer z2 can be represented as (Smirnova
et al. 2014)

R(�ρ2) = DS,2(�ρ2,Fr) − DS,2(�ρ2)

= DS,2(�ρ2,Fr)

[
1 −

(
�ρ2

�ρ2,Fr

)α2
]

,

with |�ρ2| � �ρ2,Fr, (45)

where

�ρ2,Fr =
√

z2

k
. (46)

Here, �ρ2 is the separation of points in the observer’s plane (and,
equivalently, in the near phase screen at distance z2).

The frequency–time correlation function can be obtained by the
replacement �ρ2 → �ρ2,t + �ρ2,f , where

�ρ2,�f = −2z2(�f /ν0)θ ref,0, (47)

�ρ2,�t = V obs�t. (48)

Here, V obs is the observer’s velocity. Fig. 1 shows that the frequency
structure of the diffraction pattern drifts in time, with speed df/dt =
1.5 MHz/1000 s, so that diffraction spots are extended correspond-
ingly in the dynamic spectrum. The component of velocity V obs

parallel to the refraction angle θ ref,0 defines this drift. It produces
a shift with the time lag of the minimum in the frequency of the
structure function, as shown in Fig. 9. The component of velocity
perpendicular to θ ref,0 does not contribute to the shift, but does pro-
duce an asymmetry of the structure function about the frequency
lag of the minimum, fmin . Specifically, the structure function be-
comes flatter for frequency lags smaller than fmin and steeper for
frequency lags larger than fmin . It is difficult to distinguish such an
asymmetry at large time shifts because of the strong influence of
noise. However, when V obs is parallel to the refraction angle θ ref,0,
features in the dynamic spectra are strongly elongated, as we ob-
serve. This suggests that the perpendicular component of velocity is
small compared with the parallel component and we conclude that
the vectors V obs and θ ref,0 are approximately parallel. In this case,
we can represent the frequency–time correlation function as

R(�ρ2) = DS,2(�ρ2,Fr)

(
1 − 1

2

[
t

t2,0
− f

f2,0

]α2
)

. (49)

From the shift of fmin for the largest time shift of �t = 640 P1

(Fig. 9), f2, 0 = 1.1 MHz, we find t2, 0 = f2, 0(df/dt)−1 = 700 s.
The observer’s velocity relative to the Local Standard of Rest, per-

pendicular to the pulsar’s line of sight for the date of our observation,
was V obs = 23.7 km s−1. Using this value, we find for the Fresnel
scale �ρ2,Fr = 21/α2Vobst2,0 = 2.5 × 109 cm, using α2 = 1.73. The
observer velocity is the vector sum of the velocity of orbital motion
of the Earth on the date of observation and the velocity of the Sun
relative to the Local Standard of Rest projected perpendicular to the
pulsar’s line of sight. We do not know the velocity of the clouds of
turbulent plasma responsible for scintillation, but we assume they
have a velocity relative to the observer of |V scr| ≈ 10 km s−1 or less,
although we do not know its direction and magnitude. The Fresnel
scale we find corresponds to V scr = 0. If we assume that the screen
has a velocity of 10 km s−1, the error in the evaluation of �ρ2, Fr

will be 0.75× 109 cm (about 30 per cent). Accordingly, the distance
to the near layer is z2 = 0.14 ± 0.05 pc. Using equations (47) and
(49) with �f = f2, 0, we obtain θ ref, 0 = 110 ± 30 mas.

We found above that the relative amplitude of the second com-
ponent is 0.15. Hence,

DS,2(�ρ2,Fr) = (kθscat,2�ρ2,Fr)
α2 = 0.15. (50)

For α2 = 1.73, we find θ scat, 2 = 0.4 mas. The error in θ scat, 2 is about
30 per cent.

From the condition that the cosmic prism has no significant effect
on the frequency correlation of diffractive scintillations, we can
estimate an upper limit for the distance to the cosmic prism, zprism.
The change in the refraction angle of the cosmic prism with a
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change of frequency f displaces the diffraction pattern from the
strongly scattering far screen. We assume that the frequency scale
of the pattern �fdif is less than the offset of the scattering from
refraction. We then obtain the displacement

2(�fdif/ν0)zprismθref,0 < bdif = 4.6 × 109 cm. (51)

Substituting our observed values of �fdif = 330 kHz and θ ref,0 =
110 mas into this inequality, we find zprism ≤ 1.4 pc, or zprism ≤ 2 pc
when we include the error in our estimate of θ ref.

Thus, we find three components that contribute to scintillation
of pulsar B1919+21: distant material at z1 ≈ 440 pc, or material
homogeneously distributed along the line of sight to the pulsar;
a cosmic prism at a distance z ≤ 2 pc and a nearby screen at
z2 = 0.14 pc. Most pulsars show some scattering distributed along
the line of sight and the distant material indicates that B1919+21
is no exception.

Cosmic prisms are seen for a number of nearby pulsars. Shishov
et al. (2003) found the first evidence for such a component: from
analysis of multifrequency observations they found a refraction an-
gle in the direction to PSR B0329+54 of about 0.6 mas at frequency
1 GHz. They inferred that the size of the irregularities responsible for
refraction is less than or about 3× 1015 cm. Smirnova et al. (2006)
found an indication that refractive effects dominate scattering for the
direction to PSR J0437−4715. Smirnova et al. (2014) found a cos-
mic prism in the direction of PSR B0950+08 using space–ground
interferometry. The refraction angle was measured as 1.1–4.4 mas
at frequency 324 MHz. Here, we report the first localization of a
cosmic prism, at a distance of about 1.4 pc in the direction to PSR
B1919+21. The material associated with this prism is unknown.
However, distances of only a few pc are inferred for the material
that is responsible for the scintillation of intra-day variable extra-
galactic sources (Kedziora-Chudczer et al. 1997; Dennett-Thorpe &
deBruyn 2002, 2003; Bignall et al. 2003, 2006; Jauncey et al. 2003).
This material may lie at interfaces where nearby molecular clouds
collide (Linsky, Rickett & Readfield 2008).

The distance that we find for the close screen, only 0.14 pc, is
extremely close. It lies hundreds of times further away than the
termination shock of the solar wind, but within the Oort cloud and
hence within our Solar system. Our observation is the first detection
of scattering by ionized gas in this region. Clearly, additional ob-
servations are needed to clarify the position and distribution of this
material and its relation to other plasma components of the Solar
system and the solar neighbourhood.

6 C O N C L U S I O N

We have successfully conducted space–ground observations of PSR
B1919+21 at frequency 324 MHz with a projected space–ground
baseline of 60 000 km. Analysis of frequency and time correla-
tion functions and structure functions provides an estimate of the
spatial distribution of interstellar plasma along the line of sight.
We show that the observations indicate the existence of two com-
ponents of scattering material in this direction. One is a screen
located at a distance of about 440 pc from the observer, or dis-
tributed homogeneously along the line of sight. This shows strong
diffractive scintillations and produces the largest effect. The sec-
ond component is a much closer screen, at a distance of about
0.14 pc, which corresponds to weak scintillation. The Fresnel
scale is equal to 2.5 × 109 cm at the near screen. Furthermore, a

cosmic prism is located beyond the near screen, leading to a drift
of the diffraction pattern across the dynamic spectrum at a speed
df/dt = 1.5 MHz/1000 s. We have estimated the refraction angle of
this prism as θ ref, 0 = 110 mas and obtained an upper limit for the
distance to the prism: zprism ≤ 2 pc. Analysis of the spatial coherence
function for the space–ground baseline (RA–GB) allowed us to es-
timate the scattering angle in the observer plane: θ scat = 0.7 mas.
From temporal and frequency structure function analysis, we find
the index of interstellar plasma electron density fluctuations to be
n = 3.73.
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