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Abstract—The spectra and visibility functions of giant pulses of the Crab Nebula pulsar derived from
VLBI observations carried out through the “RadioAstron” project in 2015 are analyzed. Parameters of
the scattering of the pulses in the interstellar medium are measured, namely, the scattering time and
decorrelation bandwidth. A comparative analysis of the shapes of the spectra and visibility functions of
giant pulses obtained in real observations and via modeling of their scattering is carried out. The results
suggest the presence of short bursts (dt < 30 ns) in the structure of the giant pulses at 1668 MHz, whose
brightness temperatures exceed 1038 K. These pulses propagate in the pulsar magnetosphere in a strong
electromagnetic wave regime, leading to the generation of additional radiation perpendicular to the direction
of propagation of the giant pulses. This radiation may be associated with anomalous components of the
mean pulse profile observed at frequencies above 4 GHz.
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1. INTRODUCTION

The radio emission of cosmic sources is distorted
as it propagates through the interstellar medium.
These distortions are caused by the dispersion of the
radio waves and their scattering on inhomogeneities
in the interstellar plasma. Due to the presence of
free electrons in the interstellar medium, the group
velocity of the radio waves is lower than the speed
of light, and depend on frequency, such that the
high-frequency component of the signal reaches the
observer earlier than the low-frequency component.
Such delays are not observed in the emission of
continuum sources, but can be measured well for pul-
sar pulses, providing information about the electron
density in the interstellar medium and its distribution
in the Galaxy. These delays are the main basis of
estimates of distances to pulsars [1]. Various methods
have been developed to compensate for the influence
of dispersion on the shapes of pulsar pulses [2].

The scattering of the radio waves, which is due to
random bending of the beam as it passes through the
inhomogeneity of the interstellar plasma, has several
manifestations: an increase in the observed angular
size of the source, an increase in the pulse duration,
distortion of the radio spectrum with a characteris-
tic frequency and time scale, and fluctuations of the
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intensity (scintillation) in measurements with finite
frequency bandwidths. All these manifestations of
scattering have been intensely studied starting from
the discovery of the first pulsars up to the current
epoch, both theoretically and experimentally [5]. The-
oretical studies have been based on models with a thin
scattering screen located in the line of sight between
the observer and the pulsar. This type of model was
first introduced by Scheuer [3] and was subsequently
developed by Rickett [4], Gwinn [6], and others.

The observed parameters of the scattering can
be measured via the analysis of dynamical spectra,
yielding the characteristic scintillation time scale and
decorrelation bandwidth. The scattering angle can
be directly measured only using Very Long Base-
line Interferometry (VLBI) [7]. New opportunities in
this area are offered by the “RadioAstron” space–
ground interferometer [8], which enables measure-
ments at 92 and 18 cm with angular resolutions of
1 milliarcsecond (mas) and 0.2 mas, respectively.
RadioAstron observations have been used to mea-
sure the angular sizes of the scattering disks of the
five pulsars B0329+54 [9], B1641-45, B1749-28,
B1933+16 [10], and B0531+21 [11]. In our current
study, we consider the measurement of scattering
parameters based on RadioAstron VLBI observations
of giant pulses of the Crab Nebula pulsar B0531+21
carried out in 2015.

178



GIANT PULSES OF THE CRAB NEBULA PULSAR 179

2. SOME PROPERTIES OF GIANT PULSES
OF THE CRAB NEBULA PULSAR B0531+21

The main property of giant pulses, which also
led to their name, is their high intensities, reaching
peak radio flux densities of millions of Jy [12, 13].
The energy distribution of these pulses is a power
law, N(E) ∝ Eγ , with power-law indices from −1.5
to −3.5 in various frequency ranges [14, 15]. At
1668 MHz—the frequency at which the observations
analyzed here were made—roughly five to ten pulses
a minute with peak flux densities exceeding 4000 Jy
were recorded. Several pulses with flux densities
exceeding 105 Jy were recorded each hour. These
high flux densities make it possible to analyze indi-
vidual interferometric correlation functions (visibility
functions) with high signal-to-noise ratios. Thus,
inteferometric observations of these giant pulses can
yield instantaneous amplitudes and phases of the vis-
ibility function.

The integration time is determined by the duration
of a giant pulse, and very short pulse durations are
their second characteristic property. A summary of
measurements of the characteristic durations of giant
pulses from the Crab Nebular pulsar B0531+21 is
given by Hankins et al. [15]. It follows from these
data that the duration of the giant pulses at decime-
ter wavelengths is mainly determined by scattering,
with their duration at 1668 MHz being about 10 μs.
The intrinsic duration measured at frequencies above
5 GHz is about 1 μs. It is important to know the
fine structure of the giant pulses for our subsequent
analysis. Regular pulses of ordinary pulsars consist
of one or several subpulses with durations of tens
or hundreds of microseconds (μs). It was shown
earlier that the internal structure of these subpulses
corresponds to white noise. This model has become
known as the Amplitude Modulated Noise model [16].
In turn, the internal structure of giant pulses studied
at high frequencies (from 6 to 46 GHz) with sub-
nanosecond resolution [15, 17] often displays strong,
isolated peaks with durations of less than 0.2 ns and
with peak flux densities of millions of Jy. These peaks
are often 100% circularly polarized, with unresolved
flares with polarizations of opposite signs sometimes
being present in a single subpulse [17–19].

3. OBSERVATIONS AND REDUCTION

The observations of the pulsar B0531+21 whose
analysis is considered here were carried out on Jan-
uary 10–11, 2015 from 22:00 to 04:00 UT (the ex-
periment code was RAGS10A). The space radio tele-
scope of the RadioAstron project participated in these
observations together with the Westerbork (WB),
Arecibo (AR), Effelsberg (EF), and Hartebeesthoek

(HH) ground antennas. The central frequency of
the receiver bandwidth was 1668 MHz, with the
upper and lower sidebands recorded simultaneously,
each with a width of 16 MHz, in two polarization
channels: left and right circular polarizaton (LCP
and RCP, respectively). The data were recorded in
scans of duration 1170 s, separated by 30-s gaps. At
the ground radio telescopes, the data were recorded
in MARK5B format with two-bit digitization. We
analyzed data for three ground telescopes in our
current study: Westerbork (WB), Arecibo (AR), and
Effelsberg (EF). These data were played back using
the mark5access library for reading MARKIV- and
MARK5B-format data developed by Walter Brisken.
The analysis of all the data, including the correlation
on the ground–space baselines, will be considered in
a separate paper. This standard analysis was carried
out on the software correlator of the Astro Space
Center (ASC) of the Lebedev Physical Institute using
specially developed subroutines [11].

We applied the method of coherent dispersion
compensation [20] at each radio telescope in our
reduction before computing the visiblity functions for
individual giant pulses. This method can be used
to reconstruct the fine structure of the giant pulses,
i.e., to obtain the profile of an individual pulse, while
the ASC correlator produced the autocorrelation and
cross-correlation spectra. We adopted the value
DM = 56.772 pc/cm3 for the dispersion measure,
based on observations carried out at the Jodrell
Bank Observatory;1 the smearing of the pulse in
a 16-MHz band is 1773 μs. For convenience in
reading the data, the duration of the “window” for
reconstructing the signal was chosen to be two-
thirds of the pulse period (N = 762 432 points), so
that this mixed the main pulse and interpulse. This
window was shifted synchronously with the period;
the TEMPO2 program [22] and data from the Jodrell
Bank catalog were used for the ephemerides of the
pulse arrival times.

Taking into account the contribution of the Crab
Nebula, the equivalent system temperatures of the
WB, AR, and EF radio telescope were 165, 275, and
900 Jy, respectively. The beam of the Westerbork
Synthesis Radio Telescope suppresses the powerful
radio emission from the Crab Nebula itself, which
has a flux density of 830 Jy at 1668 MHz [23], most
efficiently. Therefore, we used recordings from this
telescope to directly detect the giant pulses. The
detection threshold was at the level 22σ, which cor-
responded to 3600 Jy. Thus, two types of signal
were formed after the dispersion compensation: a
detected signal (the power) and an analytical signal
(the field). Further, the condition that the signal

1 http://www.jb.man.ac.uk/~pulsar/crab.html
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exceed the detection threshold for the WB telescope
was verified in each power channel, and the complex
cross-correlation functions (CCFs) between the re-
constructed analytical signals on the WB–AR and
WB–EF baslines—the visiblity functions—were cal-
culated when the detection threshold was exceeded.
The correlation window had 2048 channels (±32 μs),
enabling an analysis of the behavior of the ampli-
tude and phase of the visiblity function both near its
maximum and in its broad wings. The reduction
time for a single 20-minute scan, a single baseline
combination, and a single polarization channel with
coherent dispersion compensation was about 20 hrs
on a personal computer. We present here the results
of our analysis of observations obtained from 01 : 20
to 04 : 00 UT, when the Arecibo radio telescope was
operating. In all, we detected about 1500 giant pulses
during this period (2 hrs, 40 min).

4. MEASUREMENT OF THE SCATTERING
PARAMETERS

One of the most important scattering parameters
is the decorrelation bandwidth of the diffractive spec-
tral distortions. The decorrelation bandwidth can be
characterized by the half-width of the autocorrelation
function (ACF) of the power spectrum of the signal.
For this value to be statistical significant, it must be
determined in an interval appreciably exceeding the
characteristic scintillation time tscint. It is convenient
to express this definition in terms of the dynami-
cal spectrum of rhe scintillations F (ν, t) by com-
puting the two-dimensional autocorrelation function,
ACF (Δν,Δt), and then analyzing sections of this
function. To exclude the influence of noise near zero
shifts of ACF (Δν,Δt) in the case of single-telescope
data, the CCF obtained for spectra corresponding to
the polarizations in the LCP and RCP channels of the
telescope is analyzed instead of the ACF.

In the case of VLBI observations, we can also
analyze the CCFs obtained for the various radio tele-
scopes participating in the observations. In observa-
tions of giant pulses, it is not possible to construct
the true dynamical spectrum, since these pulses arrive
randomly in time, and the interval between neigh-
boring detected pulses often exceeds the character-
istic scintillation time. ACFs obtained for individual
spectra are then used to determine the decorrelation
bandwidth, via averaging of these ACFs. Here also,
the CCFs between spectra obtained for the different
polarization channels for a single telescope, or in a
single polarization channel for different telescopes,
can be used instead of ACFs. The characteristic
scintillation time remains outside the framework of
our current study in this case.

Figure 1a presents two CCFs, one of which was
obtained between spectra in different polarizations for

the Westerbork radio telescope (x’s) and the other be-
tween spectra obtained in a single polarization (LCP)
for two different radio telescopes (Westerbork and
Arecibo, circles). There is a large difference between
the two functions: the CCF between the different
telescopes exceeds the CCF between the different
polarization channels by nearly a factor of five, and
has a narrow spectral component with a half-width
of 50 kHz. At the same time, the CCF beteen the
different polarization channels can be fit well using
a single exponential function with a half-width of
320 kHz. This same function is suitable for fitting
large frequency shifts of the CCF between telescopes.
This same contradiction was obtained earlier by Kon-
dratiev et al. [24] in their analysis of VLBI obser-
vations of giant pulses of the Crab Nebula pulsar
at 2300 MHz for the Algonquin and Kalyazin tele-
scopes.

Another important scattering characteristic that
can be obtained from VLBI observations of giant
pulses is the shape and structure of the visibility func-
tion C(τ), which is obtained via an inverse Fourier
transform of the cross-spectra signals detected at dif-
ferent radio telescopes in the same polarization chan-
nels. Figure 1b shows the mean visibility function
〈C(τ)〉 obtained for the baseline between the West-
erbork and Arecibo telescopes via averaging all the
visibility functions C(τ) in the upper and lower side-
bands of the receiver over 2 hours and 40 minutes of
observations. In all, 3600 giant pulses were averaged.
The mean visibility function has a narrow peak at zero
delay with width τ0 = 1/B, and has two exponential
scales (fitted by a sum of two exponential functions)
with half-widths τ1 = 0.10 μs and τ2 = 1.0 μs. The
ratio of the amplitudes of the short-time-scale and
long-time-scale components is a1/a2 = 3.0. The
central peak in the visibility function shows that the
scattering disk was not resolved on the Westerbork–
Arecibo baseline (with a projected baseline length of
about 6000 km). An important question is which
of the two exponential scales should be adopted for
the characteristic scattering time τsc. This quantity
plays an important role in estimating the distance
to the effective scattering screen. We will return to
this question during our discussion of the results of
numerical modeling of the scattering.

5. MODELING OF THE SCATTERING

We carried out modeling of the propagation of
giant pulses with a specified structure through a
scattering medium with a characteristic decorrelation
bandwidth. This makes it possible to consider the
influence of the characteristic structure of the giant
pulses on measurements of the decorrelation band-
width and the structure of the visibility function.

ASTRONOMY REPORTS Vol. 61 No. 3 2017



GIANT PULSES OF THE CRAB NEBULA PULSAR 181

0.3

0.2

0.1

100

10−1

10−2

10−3

C
or

re
la

te
d 

am
pl

itu
de

V
is

ib
ili

ty
 fu

nc
tio

n 
am

pl
itu

de

0
−2.0 −1.5 −0.5 0.5 1.0 2.01.5

(а)

(c)

0−1.0

−2.0 −1.5 −0.5 0.5 1.0 2.01.50
Frequency lag, MHz

Frequency lag, MHz

−1.0

0.3

0.2

0.1

100

10−1

10−2

0
−2.0 −1.5 −0.5 0.5 1.0 2.01.5

(b)

(d)

0−1.0

−2.0 −1.5 −0.5 0.5 1.0 2.01.50
Delay, µs

Delay, µs

−1.0

Fig. 1. (a) Cross-correlation functions of spectra. The crosses show the CCF obtained between the autospectra in the RCP
and LCP channels for the Westerbork telescope. The circles show the CCF obtained between the autospectra in LCP for the
Westerbork and Arecibo radio telescopes. The solid curve shows a fit using two exponentials and the dashed curve a fit with
one exponential. (b) Mean amplitude of the visibility function for the Westerbork–Arecibo baseline. The number of averaged
giant pulses is N = 3600. (c) CCFs obtained by modeling the spectra of the giant pulses. The solid curve corresponds to the
CCF between the synthesized spectra for different telescopes in a single polarization. (d) Mean visiblity function obtained by
modeling the giant pulses. The solid curve corresponds to the sum of two exponential functions with half-widths of 0.09 and
1.12 μs.

We represented the scattering transfer function in
the form K(iω) = K(ω)eiφ(ω), where K(ω) is the
amplitude response function (ARF) and φ(ω) the
phase response function (PRF) of the medium. In
the theory of linear electric circuits, there is a one-
to-one relationship between the ARF and PRF. We
can write the transfer function on a logarithmic scale
lnK(iω) = lnK(ω) + iφ(ω) = A(ω) + iφ(ω). As
has been shown, for example, by Gonorovskii [25],

A(ω1) = − 1

π

+∞∫

−∞

ϕ(ω)

ω − ω1
dω, (1)

ϕ(ω1) =
1

π

+∞∫

−∞

A(ω)

ω − ω1
dω. (2)

We can see from these expressions that A(ω) and
ϕ(ω) are uniquely related via a Hilbert transform, in
other words, they are conjugate Hilbert functions.

One of the properties of a Hilbert transform is a simple
relationship between the harmonics of the spectra of
the conjugate functions, namely, the phases of cor-
responding harmonics differ by π/2. This provides a
simple means to make a transition from one function
to its conjugate. Suppose that the function A(ω)
is known; we can then obtain the Fourier transform
of this function and introduce a phase shift between
harmonics of π/2. Essentially, the real and imaginary
parts are exchanged. The inverse Fourier transform
then gives the function ϕ(ω).

The structure of the giant pulses was modeled as a
random set of unresolved bursts that were equally dis-
tributed in an interval of 2 μs with amplitudes having
a Gaussian distribution. Each burst was represented
as two readings with equal amplitudes and opposite
signs. In most of the examples presented below, the
number of bursts was taken to be 20. We added a
specified level of normally distributed random noise
to this structure, such that the signal-to-noise radio

ASTRONOMY REPORTS Vol. 61 No. 3 2017
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Fig. 2. Temporal structure of individual giant pulses generated by the modeling (upper) and actually observed (lower).

was about 100. Figure 2 shows profiles of individual
giant pulses, one of which was generated by the mod-
eling and the other of which was actually observed.

The ARF of the receiver F (ν) was formed in
a band with width B = 16 MHz, and specified to
have a flat section from νb to B − νb and edges
that fell off according to the power law F (ν) ∝
F (ν − νb)

−k with k = 4. The flat section occupied
0.75 of the entire bandwidth, i.e., 12 MHz. This
ARF was superposed on the scintillation spectrum,
specified as a sum of two-sided exponential functions
Yi(ω) = Aie

−b(ω−ωi), whose frequency centers ωi

were randomly and uniformly distributed through the
entire receiver bandwidth and whose amplitudes had
a Gaussian distribution. The exponential parameter
b was chosen in accordance with real measured
mean values of the decorrelation bandwidth (about
300 kHz). The number of scintillation peaks in the
spectrum was taken to be 10. Further, for each
case, the ARF formed was used to compute the PRF
as described above, and the result of passing the
modeled giant pulse through a specified realization of
a scattering medium was obtained by multiplying the
spectra of the pulse by the transfer function K(iω).
This yielded the complex spectrum of the generated
signal of a giant pulse that has passed through the
specified realization of a scattering medium, which
served as the basis for our subsequent comparative
analysis.

6. INFLUENCE ON THE DECORRELATION
BANDWIDTH

In the subsequent modeling, the decorrelation
bandwidth was computed in two ways: by correlating

the spectra obtained for the different polarization
channels, and by correlating the spectra obtained
in a single polarization channel on different radio
telescopes. Recall that different pulse structures are
observed in different polarization channels in the case
of real giant pulses from the pulsar B0531+21. When
modeling using the former approach, we specified
different structures of the giant pulses and used the
same scintillation structure for both polarizations.
When modelng using the latter approach, both the
structure of the pulse and the structure of the spectra
were the same, and only their noise levels differed.

In all, we generated 10 000 realizations. Figure 1c
presents the results of our modeling: the solid curve
corresponds to the CCF between the synthesized
spectra for the different telescopes in a single polar-
ization (same pulse structure), and the dotted curve
the mean CCF between the polarization channels
(different pulse structures). The modeled functions
confirm the main property of real CCFs (see Fig. 1a),
namely, the CCF spectra in a single polarization have
an amplitude at zero shift that is a factor of two higher
and display a narrow frequency structure at zero shift,
while the two functions concide at large frequency
shifts, where they display a purely exponential fall-
off with the expontial index specified in the modeling.
Thus, the narrow central component is due to the
influence of the spectrum of the individual pulses,
while the broad component corresponds to the scintil-
lation spectrum. It is therefore this broad component
that should be used to determine the decorrelation
bandwidth.

ASTRONOMY REPORTS Vol. 61 No. 3 2017
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7. INFLUENCE ON THE VISIBILITY
FUNCTION

We also modeled the visibility functions by cor-
relating the analytical signals for the same structure
of the generated pulses passed through the same
structure of the scintillation spectra, but with different
amounts of white noise added (an interferometer with
zero baseline). The mean visibility function for the
10 000 realizations is shown in Fig. 1d. The solid
curve passing through the circles represents the sum
of two exponential functions with half-widths of 0.09
and 1.12 μs. Only one scale was specified in the mod-
eling, related to the width of the exponential diffractive
distortions of the radio spectrum (Δν1/2 = 300 kHz).
The appearance of an additional short time scale in
the mean visibility function is due to the influence
of the structure of the individual giant pulses. The
absence of a central peak in the modeled mean visi-
bility function is due to the absence of the extended
component that is observed in real giant pulses in our
model.

Figure 3 compares modeled and observed visibility
functions for individual giant pulses. This compar-
ison shows that the passage of pulses consisting of
a small number of random unresolved components
through a medium giving random distortions with a
characteristic frequency scale in the spectrum leads
to the appearance of quasi-ordered structures in the
visibility function. The appearance of these structures
confirms our model for the giant pulses, in which
unresolved components dominate and the observed
structures are the result of interference between sepa-
rate, identical wave packets. The time scale for these
unresolved components is ≤30 ns. In this case, we
can estimate a lower limit for the brightness temper-
ature of the giant pulses of the pulsar B0531+21 [26]:

Tb ≥
EpL

2

kν2τ3GP

, (3)

where k = 1.38 × 10−16 erg/K is Boltzmann’s con-
stant, ν is the observing frequency, and τGP = 30 ns
is the time scale for an unresolved component of
a giant pulse. For the strongest pulse detected in
the observations of January 10–11, 2015, Ep = 3×
10−26 erg/s cm2 Hz, yielding the estimated bright-
ness temperature limit Tb ≥ 1038 K. Other estimates
yield similar brightness temperatures [18, 24].

8. A GIANT PULSE AS A STRONG
ELECTROMAGNETIC WAVE

How appropriate is the name “giant pulse”? Does
this phenomenon represent something extraordinary
in a physical sense? To answer these questions, we
must estimate the strengths of the fields comprising

the electromagnetic wave associated with a giant
pulse, in order to compare these with the conditions
in the pulsar magnetosphere. The peak flux density of
a giant pulse measured in Jy registered by telescopes
near the Earth are related to the amplitude of the
associated wave by the electrodynamical relations

U =
E2 +H2

8π
≡ A2

4π
c (4)

= Speak(Jy) × 10−23 ·Δν,

where 1 Jy = 10−26 W/m2 Hz = 10−23 erg/s cm2 Hz,
U is the energy density, E and H are the electric and
magnetic field strengths, A is the wave amplitude,
which is identically equal to the amplitude of the
oscillations of the magnetic or electric field (for
an electromagnetic wave, E = H = A), Δν is the
frequency bandwidth of the radiation, and c is the
speed of light. It follows that the amplitude near the
Earth is

A⊕ =

(√
4π

c
Speak(Jy)Δν

)
× 3.3 × 10−12 (5)

≈ 6.8 × 10−17 ·
√

Speak(Jy)Δν.,

Apart from the brightness of the pulse, the ob-
served flux density of a pulse also depends on the
parameters of the receiver, most importantly the re-
ceiver bandwidth and time resolution. For this reason,
the pulse energy E in units of Jy/μs is often used
in place of the flux density. This makes it easy to
compare different observations. In this case, A⊕ =

6.8 × 10−17 ·
√

EΔν/Δt, where Δt is the pulse du-
ration.

The wave amplitude can conveniently be ex-
pressed in units having the dimensions of angular
frequency [13], using an expression analogous to the
expression for the Larmor gyrofrequency, where the
wave field strength is used in place of the constant
magnetic-field strength: ωW = eA/mc = 1.76 ×
107 ·A. At the boundary of the magnetosphere, in
the region of the light cylinder, the flux is SLC =

Speak(Jy) · (L/RLC)
2. We obtain the corresponding

amplitude ALC = A⊕
L

RLC
(an inverse square law),

where L is the distance from the observer to the
pulsar, RLC = cP/2π is the radius of the light
cylinder, and P is the pulsar period. For the Crab
Nebula pulsar, L = 2 kpc = 6× 1021 cm and RLC =
1.6 × 109 cm. In this case, ALC = 3.8× 1012 ·A⊕ =

2.6 × 10−4 ·
√

Speak(Jy)Δν.
The peak flux densities of the giant pulses observed

in the Crab Nebula lie in the range 4× 103−106 Jy.
We derived an estimate for the frequency bandwidth
used in our observations, Δν = 16 MHz. In this case,
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Fig. 3. Four pairs of modeled and observed visibility functions for individual giant pulses. In each pair, the upper and lower
curves show the amplitudes of the visibility functions for the modeled and observed pulses, respectively.
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the wave amplitude (field strength) of a giant pulse at
the light cylinder will be 120–2000 G. These values
should most likely be regarded as lower limits, since,
as was shown in the previous section (see also [18]),
giant pulses are dominated by unresolved compo-
nents for which Δν ∼ ν. Also,the peak flux density in
this case should be increased by a factor of ν/16 MHz
compared to the observed value. For a frequency of
1.6 GHz, at which most of our observations have been
carried out, this yields A ∼ 3× 103.

We also apply the inverse-square law in the region
inside the magnetosphere, nearly to the surface of
the neutron star, whose radius is R∗ ∼ 106 cm.
The amplitude of the giant-pulse wave near the
surface can be estimated as A∗ = 3× 1015 ·A⊕ =
0.2

√
Speak(Jy)Δν ∼ 5× 106−1010 G, which corre-

sponds to an energy density 3× 1012−1021 erg cm−3.
However, the energy density of the particles carried
from the surface and accelerated by the induced
electric field fundamentally cannot exceed a fraction
(2πR∗/cP )2 = 4× 10−5 of the energy density of
the magnetic field, which is 1019 erg cm−3. The
circumstance that the energy density of the giant
pulses exceeds the energy density of the plasma,
as was noted in [18], creates great difficulties for
attempts to explain such pulses using conventional
plasma mechanisms. But another fact is even more
important, namely, a more careful analysis leads
to the unexpected conclusion that the behavior of
electromagnetic waves with amplitudes as high as
those observed for giant pulses cannot be described
using the usual laws of plasma physics, since these
cease to be valid for waves that are strong enough to
accelerate charged particles to relativistic speeds.

An obvious criterion for a strong wave is the con-
dition ωW > ω, where ωW is the amplitude of the
strong wave in units of angular frequency and ω is
the angular frequency of the primary wave. In other
words, when ωW/ω � 1, the wave is strong, and the
wave can be considered weak when ωW/ω � 1. In
this case, the character of the interaction between the
wave and plasma changes radically: particles radiate
in a narrow cone along their motion, primarily in the
direction perpendicular to the direction of the primary
wave and at higher frequencies. There is no inter-
ference between secondary and primary waves, and
interactions between particles and waves reduce to a
loss of the energy of the wave to acceleration of the
particles; in other words, giant pulses act like efficient
particle accelerators.

The problem of the motion of a charged particle
in the field of an electromagnetic wave has an ex-
act analytical solution that is valid for any value of
ωW /ω [27]. It follows that, if ωW � ω, in the field of a
circularly polarized wave, a particle moves in a circle

with radius λ/2π (λ is the wavelength), in a plane
that is perpendicular to the direction of propagation
of the primary wave, with Lorentz factor γ = ωW/ω,
and radiates at the frequency ωem ∼ ωγ3 = ω3

W/ω �
ω within the opening angle θem ∼ γ−1 ≈ ωW /ω—a
full analog of synchrotron radiation. In the field of a
linearly polarized wave, the particle will move along
a trajectory having the shape of a figure eight in the
plane of E and the wave vector k. The longitudinal
axis of the figure eight is perpendicular to the direction
of propagation of the wave. The Lorentz factor varies
along the trajectory from γ = 0.36ωW at the edges to
γ = 1.03ωW /ω at the center.

Possible evidence for such “side” emission may
be provided by the extreme variations in the pulsar
profile at frequencies above 4 GHz [15]. The main
pulse disappears completely, and the phase of the
interpulse jumps by 15◦. Two broad features appear
at longitudes where there was no emission at all at
lower frequencies. We suggest that this behavior can
be interpreted as radiation from particles accelerated
in the wave field associated with the giant pulses.
We intend to consider this question in more detail in
subsequent studies.

With regard to the nature of giant pulses and their
role in the formation of the emission of a pulsar, we
suggest a scenario in which giant pulses are born
near the surface of the neutron star during a cascade
breakdown of the vacuum gap, as a natural conse-
quence of the appearance of volume charge, which
accompanies this process. The giant pulse then acts
like an efficient particle accelerator along the entire
path from the neutron-star surface to the boundary
of the magnetosphere. The Crab Nebula pulsar is
a young object with a short period and accordingly
a small radius for the light cylinder. Therefore, a
giant pulse is able to spend only a small fraction of
its energy on particle acceleration during the short
time required for its passage through the magneto-
sphere. Old pulsars with periods of order a second
have magnetospheres a factor of ten larger, so that
all the energy in giant pulses goes into particle ac-
celeration. In this latter case, a pulse expends all its
energy, but excites the plasma of the magnetosphere
in the process, making possible the generation of
radio emission via standard plasma mechanisms (for
example, as a result of two-stream instability).

9. CONCLUSION

Our modeling of the influence of scattering on the
scattering parameters (the decorrelation bandwidth
and the characteristic scattering time) has enabled us
to draw the following conclusions.

In addition to diffractive distortion, a narrow-band
feature due to the spectrum of the giant pulse itself
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appears in the power spectrum of the signal from
a giant pulse. The broadband feature in the CCF
of the autospectra obtained on different radio tele-
scopes should be adopted as the measured decorre-
lation bandwidth.

An additional short-scale feature associated with
fine structure of the giant pulses themselves also
appears in the mean visibility function. Here, too,
the characteristic scattering time is indicated by the
extended component of the mean visibility function.

The observed quasi-regular visibility functions
of individual giant pulses indicate the presence of
strong, unresolved components in the structure of
these pulses at 1668 MHz. Similar components were
observed earlier only at frequencies above 5 GHz, in
the frequency range where they are not blurred by
scattering. Thus, VLBI observations of giant pulses
from the Crab Nebula pulsar indicate the presence of
fine structure in the pulses at 1668 MHz—unresolved
peaks with durations τ ≤ 30 ns and brightness
temperatures Tb ≥ 1038 K. Taking into account the
discussion in the previous section, we conclude that
unresolved components with such high brightness
temperatures will propagate as strong electromag-
netic waves that accelerate particles in the ambient
plasma. This gives rise to new components in the
pulsar pulse profile (HFC1, HFC2) at frequencies
above 4 GHz [15].
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