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ABSTRACT

Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical
telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio
telescopes. We present a scattering mitigation framework for radio imaging with very long baseline
interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,”
derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) ef-
fects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions
to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously recon-
structing an unscattered image and its refractive perturbations. Its advantages over direct imaging
come from utilizing the many deterministic properties of the scattering – such as the time-averaged
“blurring,” polarization independence, and the deterministic evolution in frequency and time – while
still accounting for the stochastic image distortions on large scales. These distortions are identified in
the image reconstructions through regularization by their time-averaged power spectrum. Using syn-
thetic data, we show that this framework effectively removes the blurring from diffractive scattering
while reducing the spurious image features from refractive scattering. Stochastic optics can provide
significant improvements over existing scattering mitigation strategies and is especially promising for
imaging the Galactic Center supermassive black hole, Sagittarius A∗, with the Global mm-VLBI Array
and with the Event Horizon Telescope.
Keywords: radio continuum: ISM – scattering – ISM: structure – Galaxy: nucleus – techniques:

interferometric — turbulence

1. INTRODUCTION

For its entire history, optical astronomy has had to
contend with the deleterious effects of the Earth’s atmo-
sphere on images. These effects are apparent even with
the naked eye through the twinkling of stars. A major
technological advance, first proposed by Babcock (1953),
was the implementation of adaptive optics to dynami-
cally correct for the rapid wavefront variations caused
by the atmosphere, allowing optical and infrared tele-
scopes to approach their diffraction-limited resolutions
(reviewed by Davies & Kasper 2012). The effects of the
Earth’s atmosphere on radio observations with a nar-
row field of view are simpler, introducing a single time-
and frequency-dependent phase for a telescope, which
can be removed as part of standard calibration (Pearson
& Readhead 1984; Thompson et al. 2001). But radio
observations are subject to another source of random,
time-variable refraction – the ionized interstellar medium
(ISM).

Both atmospheric and interstellar scattering can be de-
scribed in the framework of wave propagation through
an irregular refracting medium. And both are typically
analyzed in the simplified framework of a thin scatter-
ing screen that only modifies the phase of the incident
radiation (see, e.g., Narayan 1992). A major difference,
however, is that optical scattering in the atmosphere cor-
responds to a screen whose phase varies by much less
than 1 radian across the scattered image, while radio-
wave scattering in the ISM often has phase variations
of many radians across the scattered image. These two
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cases describe the weak and strong scattering regimes,
respectively.

In the weak-scattering regime, the dominant effects of
scattering are from large-scale phase gradients, which
primarily cause the image to become speckled and its
centroid to shift randomly with time. Indeed, many
mitigation strategies for optical scattering entirely fo-
cus on removing the image wander (in adaptive optics, a
so-called “tip-tilt” correction). In the strong-scattering
regime, the scattering effects bifurcate into two classes:
“diffractive” and “refractive”. Diffractive effects arise
from small-scale phase gradients; their most familiar ef-
fect on radio images is “blurring” with a kernel that
grows approximately with the squared observing wave-
length. Refractive effects arise from large-scale phase
gradients; they produce image distortions and introduce
substructure into the scattered image (Narayan & Good-
man 1989; Goodman & Narayan 1989; Johnson & Gwinn
2015). With the advent of microarcsecond imaging with
very long baseline interferometry (VLBI), signatures of
refractive substructure are now apparent in observations
and can significantly affect VLBI imaging (e.g., Gwinn
et al. 2014; Johnson et al. 2016; Ortiz-León et al. 2016).
As discussed in Johnson & Gwinn (2015), refractive ef-
fects are especially important for imaging the Galactic
Center supermassive black hole, Sagittarius A∗ (Sgr A∗),
with the Event Horizon Telescope (EHT; Doeleman et al.
2009) and for imaging active galactic nuclei (AGN) using
Earth-space VLBI with RadioAstron (Kardashev et al.
2013).

In this paper, we develop a new scattering mitigation
strategy for VLBI imaging, “stochastic optics”. This
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strategy derives from the separation of diffractive and
refractive scattering effects, approximating the former
by their time-averaged image blurring while retaining
the latter through a stochastic, large-scale scattering
screen (Blandford & Narayan 1985; Johnson & Narayan
2016). Stochastic optics extends traditional VLBI syn-
thesis imaging by simultaneously reconstructing the un-
scattered image and the refractive scattering screen. It is
analogous to adaptive optics but does not require a nat-
ural or artificial guide star (i.e., a bright point source),
instead utilizing known statistical properties of the scat-
tering medium to regularize the image reconstruction.
We describe the theoretical motivation for our approach
in §2. We then outline how to implement stochastic op-
tics in VLBI imaging and show example image recon-
structions with synthetic data in §3. We discuss the re-
lationship between stochastic optics and existing mitiga-
tion strategies in §4, and we summarize our method and
conclusions in §5.

2. BACKGROUND

The motivation and framework of thin-screen scatter-
ing have been extensively developed and are summarized
in several excellent reviews (e.g., Rickett 1990; Narayan
1992; Thompson et al. 2001). In this section, we only
provide a brief overview of scattering theory that is fo-
cused on the aspects that are relevant to our mitigation
strategy.

2.1. Thin-Screen Scattering

When an image is viewed through a medium with spa-
tial variations in its refractive index, the image is dis-
torted. Refractive inhomogeneities steer and focus differ-
ent regions of an image while preserving surface bright-
ness (Born & Wolf 1980). For optical images, familiar
examples of such distortions arise from peering through a
medium with steep temperature gradients – for instance,
an image viewed above a flame. In contrast, radio-wave
scattering in the ionized ISM arises from density inhomo-
geneities because the refractivity in a plasma is approx-
imately proportional to the local electron density (Jack-
son 1999).

For both optical and radio observations, the scatter-
ing is often well-described as arising from a turbulent
cascade that is localized to a single thin screen between
the source and observer. The screen adds a stochastic,
position-dependent phase φ(r) to the incident radiation
but does not alter the amplitude of incident waves. Here,
and throughout this paper, r denotes a two-dimensional
transverse coordinate on the screen. The screen is as-
sumed to be statistically homogeneous, and the scat-
tering can then be quantified in two complementary
ways: by the structure function of the phase fluctuations

Dφ(r) ≡
〈

[φ (r′ + r)− φ (r′)]
2
〉
∝ |r|α or by the power

spectrum of the phase fluctuations Q(q) ∝ |q|−(α+2)
.

These two approaches are related by a Fourier transform,
Q(q) = − 1

2λ2 D̃φ(q), where the prefactor renders Q(q)
dimensionless and independent of the observing wave-
length (λ ≡ λ

2π ). We will adopt a Kolmogorov index
(α = 5/3) for examples, as is observationally motivated
(Armstrong et al. 1995), although our mitigation strat-
egy is suitable for any “shallow” spectrum (0 < α < 2).

In addition to α, a small number of parameters char-
acterize the scattering. The first is the phase coherence
length r0, defined by Dφ (r0) = 1 (r0 is closely related to
the Fried parameter in the optical literature; see Narayan

1992). The second is the Fresnel scale rF ≡
√

DR
D+Rλ,

where D is the Earth-scattering distance, and R is the
source-scattering distance. These parameters also deter-
mine the scattering regime: when r0 < rF the scattering
is “strong,” and when r0 > rF the scattering is “weak.”
Our scattering mitigation strategy will apply to observa-
tions in the strong scattering regime. The evolution of
the scattering in time is most commonly estimated using
the frozen-screen approximation (Taylor 1938), which de-
pends on a characteristic transverse velocity vector V⊥.
The most common extensions to this basic scattering
model are to include inner and outer scales of the turbu-
lence and anisotropic scattering.

Other useful quantities can then be written in terms of
these parameters. For instance, the refractive scale, rR =
r2F/r0 determines the transverse size of the ensemble-
average scattered image of a point source. The full width
at half maximum (FWHM) angular size of this image
is θscatt ≈ 0.37(1 + M)−1λ/r0 = 0.37(2πrR/D), where
M ≡ D/R is the effective magnification of the scatter-
ing screen when viewed as a lens (see Gwinn et al. 1998;
Johnson & Gwinn 2015). In the optical literature, this
image is called the seeing disk, and θscatt is called the
seeing. The isoplanatic angle θiso describes the angular
displacement over which a point source will have a simi-
lar instantaneous scattered image. For the optical case of
weak scintillation, θiso ∼ r0/D � θscatt, whereas for the
radio case of refractive scattering, θiso ∼ rR/D = θscatt.

Despite their similar scattering foundations, optical
scattering in the atmosphere and radio scattering in the
ionized ISM have key differences. For example, the atmo-
spheric refractivity for wavelengths from optical through
infrared is only weakly dependent on wavelength (Edlén
1966), so optical scattering is nearly achromatic. Con-
sequently, φ ∝ λ−1, r0 ∝ λ6/5, and rR ∝ λ−1/5. In
contrast, the refractivity for radio-wave propagation in
the ionized ISM (a cold plasma) is proportional to wave-
length (Jackson 1999), so φ ∝ λ, r0 ∝ λ−6/5, and
rR ∝ λ11/5. Another difference is that optical scatter-
ing in the atmosphere is typically weak (see Narayan
1992), while radio scattering is typically strong below
∼5 GHz; for heavily scattered lines of sight, the strong-
weak transition frequency is higher (e.g., it is ∼2 THz
for Sgr A∗). A third important difference is that op-
tical and radio scattering have vastly different coher-
ence timescales: milliseconds for optical observations and
days to months for radio observations. These different
timescales result in different challenges and strategies for
mitigation, as we will discuss later in §4.1.

2.2. Assessing Scattering Degradation: The Strehl Ratio

The Strehl ratio, 0 < S ≤ 1, is commonly used in the
optical literature to characterize image degradation from
scattering. S is defined as the peak intensity of the mea-
sured point spread function (with scattering) divided by
the peak intensity of the ideal, diffraction-limited instru-
mental response (without scattering).

We can extend the Strehl ratio to radio interferometry
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Figure 1. The Strehl ratio (Eq. 1) as a function of observing
wavelength for three scenarios: (solid) ground-based VLBI with
median Galactic scattering, (dashed) ground-space VLBI with me-
dian Galactic scattering, and (dotted) ground-based VLBI with
scattering corresponding to the Galactic center. For ground-space
VLBI, we assume baselines extending to 30 Earth diameters, simi-
lar to the range of RadioAstron. Heavy ticks along the wavelength
axis indicate operating wavelengths of several current arrays. Miti-
gation strategies will be important for observations at 6- and 18-cm
with RadioAstron and for ground-based observations of Sgr A∗ at
wavelengths even as short as 1 mm.

by relating the peak brightness of an unscattered im-
age restored with the nominal VLBI beam (FWHM θuv;
hereafter the “CLEAN beam”) to the peak brightness of
the ensemble-average scattered image restored with the

same beam (approximate FWHM
√
θ2uv + θ2scatt). For

Gaussian images, the peak brightness is proportional to
the inverse FWHM, so we obtain

S ≈ θuv√
θ2uv + θ2scatt

. (1)

Thus, the Strehl ratio gives the angular resolution that
a VLBI array achieves in the presence of scattering as a
fraction of its nominal diffraction limit.

In the optical community, the Strehl ratio is used to
quantify the significance of scattering and also to assess
the performance of scattering mitigation techniques. For
the radio case, only the former application is relevant
because we will see that existing scattering mitigation
techniques tend to introduce spurious compact features
in reconstructed images (corresponding to S > 1).

We will now estimate the Strehl ratio for a few cases of
interest. A VLBI array spanning the Earth has maximal
baseline lengths of ∼104 km, so θuv ≈ λcm × (0.2 mas),
where λcm is the observing wavelength in cm.1 For typ-
ical lines of sight away from the Galactic plane, θscatt ∼
λ2cm × (1µas) (Cordes & Lazio 2002; Johnson & Gwinn
2015). These characteristic parameters give a Strehl ra-
tio near unity for wavelengths shorter than a decime-
ter, and S ∼ 200/λcm for wavelengths longer than a few
decimeters. However, for Earth-space VLBI with Ra-
dioAstron, the Strehl ratio is near unity only for wave-
lengths shorter than ∼5 cm, falling as S ∼ 7/λcm for
longer wavelengths. For heavily scattered lines of sight,
such as those near the Galactic plane, S falls below unity

1 Note that θuv in this case corresponds to the nominal resolution
of a global VLBI array; some imaging techniques regularly achieve
a factor of ≈2 improvement (e.g., Cornwell & Evans 1985; Chael
et al. 2016), resulting in a lower Strehl ratio.

at much shorter wavelengths. For instance, the line of
sight to the Galactic center has θscatt ∼ λ2cm × (1 mas)
(see Bower et al. 2006), giving S ≈ 0.2/λcm for Earth-
based VLBI at wavelengths longer than a few millime-
ters. Figure 1 shows the Strehl ratio as a function of
observing wavelength for these cases.

2.3. Decoupling Diffractive and Refractive Scattering

In weak scattering, the incident wavefront is only
mildly perturbed, and the dominant scattering effects
arise from modes in the phase screen with |q| ∼ r−1F . In
strong scattering, the dominant effects arise from fluctua-
tions on two widely separated scales r0 and rR, giving rise
to two branches of scintillation, diffractive and refractive
(Rickett et al. 1984). Narayan & Goodman (1989) and
Goodman & Narayan (1989) showed that there are then
three applicable averaging regimes for images. The snap-
shot image only averages over source noise, an average
image additionally averages over the diffractive scintilla-
tion, and an ensemble-average image averages over both
diffractive and refractive scintillation.

An extended source quenches the scintillation. Sources
with angular size much larger than r0/D quench the
diffractive scintillation, while sources with angular size
much larger than rR/D quench the refractive scintilla-
tion. For extremely compact sources, such as pulsars,
there are now a number of promising techniques to de-
termine the coherent scattering response by utilizing the
point-like nature of the pulsed signal and the rich in-
formation in the diffractive scintillation pattern (e.g.,
Walker et al. 2008; Brisken et al. 2010). However, our fo-
cus is observations of strongly-scattered sources that can
resolve the intrinsic angular structure. We will therefore
assume that the diffractive scintillation is quenched (the
refractive scintillation may also be partially quenched).
Consequently, a “single-epoch” image corresponds to the
average image in the language of Narayan and Goodman,
or a “speckle image” in the language of optical scattering.

Blandford & Narayan (1985) argued that diffractive
and refractive scattering effects on images can be treated
separately. Because diffractive effects are dominated on
small scales (∼r0), they can be approximated by their
ensemble-average effect: blurring of the unscattered im-
age with a kernel G(r) (the seeing disk). This kernel is
most naturally represented in the Fourier-conjugate vis-
ibility domain, G̃(b) = e−

1
2Dφ(b/(1+M)), where b corre-

sponds to the physical length of an interferometric base-
line. Refractive effects can be approximated in a geo-
metrical optics framework – gradients of the large-scale,
refractive modes of the phase screen will steer and fo-
cus the ensemble-average image. The Appendix of John-
son & Narayan (2016) provides formal justification for
this approach via the Fresnel diffraction integral. The
single-epoch scattered image Ia(r) is then related to the
unscattered image Isrc(r) via (Johnson & Narayan 2016;
Eq. 9, 10)

Ia(r) ≈ Iea
(
r + r2F∇φr(r)

)
(2)

≈ Iea(r) + r2F [∇φr(r)] · [∇Iea(r)]

= Isrc(r) ∗G(r) + r2F [∇φr(r)] · [∇ (Isrc(r) ∗G(r))] .

In these expressions, ∇ denotes a two-dimensional, trans-
verse gradient on the phase screen, and we have written
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Figure 2. Relationships between different scattering and imaging regimes in the geometric optics reduction of Blandford & Narayan
(1985). For simplicity, the unscattered model is a thin ring of radius 100µas that has a 5µas Gaussian taper in the radial direction (this
ring is not associated with the black hole shadow of Sgr A∗); the scattering parameters correspond to those of Sgr A∗ at 3.5 mm (see §3.5).
As discussed in §2.3, this reduction decouples scattering into diffractive and refractive contributions, which give rise to deterministic and
stochastic image distortions, respectively. The ensemble-average image is the convolution of the unscattered image with the diffractive
kernel. The average image is a distorted version of the ensemble-average image after steering and focusing of rays by gradients of the
refractive phase screen (Eq. 2). The color scale in each frame is linear and each is scaled independently; the total range of screen phase

in this example spans 1.4 × 104 radians. Stochastic optics uses observations of the average image along with the known kernel G̃(b) and
(time-averaged) power spectrum Q(q) of the scattering to simultaneously reconstruct the unscattered image and the refractive phase screen.

the ensemble-average image as Iea(r) = Isrc(r) ∗ G(r),
where ∗ is a spatial convolution. For each image, r is
a transverse coordinate at the distance of the scattering
screen D (not the distance of the source, D +R), so the
corresponding angular scales are θ = r/D. For simplic-
ity, throughout the remainder of this paper we will use
φ(r) to denote the refractive phase screen φr(r).

Figure 2 summarizes the relationships between the un-
scattered, average, and ensemble-average images after
decoupling the diffractive and refractive scattering.

2.4. Refractive Substructure

As Figure 2 shows, refractive phase gradients “shuf-
fle” image brightness, producing substructure in scat-
tered images (Narayan & Goodman 1989; Goodman &
Narayan 1989). Implications of refractive substructure
for VLBI of extended sources have been calculated and
discussed in detail by Johnson & Gwinn (2015), Johnson
et al. (2016), and Johnson & Narayan (2016). In par-
ticular, refractive substructure introduces a new source
of noise for interferometric observables. However, this
“refractive noise” is significantly different from thermal
noise. Refractive noise is wideband and persistent, with a
decorrelation bandwidth of order unity and typical decor-
relation timescale of days to weeks. Refractive noise is
also correlated among different baselines and is sensi-
tive to the intrinsic source structure. Thus, modeling
the refractive noise requires a source model, and some
signatures of the refractive noise, such as closure phase
jitter from scattering, can be very sensitive to the source
model (see, e.g., Fig. 4 of Johnson & Narayan 2016).

Most importantly, refractive noise falls slowly with in-
creasing baseline length (the rms amplitude falls roughly

as |b|−5/6), so it can provide significant power on long
baselines, even on baselines that would have entirely re-
solved the unscattered source. Consequently, refractive
substructure can profoundly influence VLBI imaging and
is increasingly important at higher angular resolution.

Because detecting refractive substructure requires
VLBI with both high sensitivity and extremely high an-
gular resolution, unambiguous signatures of refractive
substructure have only recently been identified. For
Sgr A∗ at 1.3 cm, the detection of substructure on long
baselines was enabled by using the GBT with the VLBA
recording 512 MHz of bandwidth (Gwinn et al. 2014).
At 3.5 mm, recently detected non-zero closure phases
are likely associated with substructure and were only
measured when the LMT was used in concert with the
VLBA (Ortiz-León et al. 2016; Brinkerink et al. 2016).
At 1.3 mm, the closure phase on a triangle of baselines
joining California, Arizona, and Hawaii has shown per-
sistent sign over four years, demonstrating that refractive
noise cannot produce the observed non-zero signal (Fish
et al. 2016); however, an analysis based on radiatively
inefficient accretion flow models found that the observed
closure phase variability may be dominated by refractive
noise (Broderick et al. 2016). The addition of the Ata-
cama Large Millimeter/submillimeter Array (ALMA) to
VLBI experiments in 2017 (Fish et al. 2013) will sharply
increase the sensitivity at 3.5 and 1.3 mm and should
lead to many baselines with strong detections that are
dominated by the stochastic signal from refractive sub-
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Figure 3. Baseline coverage for Sgr A∗ with the VLBA, LMT,
GBT, and ALMA at 3.5 mm wavelength. ALMA brings many
long, sensitive baselines but detections on these baselines will be
strongly affected by refractive substructure. The dashed ellipse de-
notes the transition between baselines that are dominated by the
ensemble-average visibility (within the ellipse) to baselines that are
dominated by the random fluctuations from refractive substruc-
ture (outside the ellipse). This calculation assumed an unscattered
source that is a circular Gaussian with FWHM of 130µas, as is
consistent with current observations (Lu et al. 2011; Ortiz-León
et al. 2016). However, the size of the transition ellipse is not es-
pecially sensitive to the size of the unscattered source because a
smaller/larger intrinsic source will raise/lower both the ensemble-
average visibility and the refractive noise on long baselines.

structure (see Figure 3). Consequently, scattering will
strongly affect VLBI imaging of Sgr A∗ with ALMA, and
a suitable mitigation framework is essential to derive ro-
bust conclusions from these images.

3. STOCHASTIC OPTICS

We now develop a new scattering mitigation framework
for VLBI imaging. We begin by summarizing general
considerations for mitigation strategies, then we describe
the new framework and details about how it can be im-
plemented. We will conclude this section with example
reconstructions using this framework on simulated data.

3.1. General Considerations

The goal of our mitigation framework is two-fold: to
partially invert the “blurring” from diffractive scatter-
ing, and to identify and minimize spurious image fea-
tures caused by refractive scattering. Although the first
goal is identical for radio and optical scattering (essen-
tially, developing a technique that brings the Strehl ra-
tio closer to unity), the second is specific to the radio
case because of the vastly different timescales involved.
For optical mitigation, the coherence timescale is mil-
liseconds so the observations can collect a representa-
tive ensemble of independent scattered images. However,
even at the highest current resolutions of VLBI, the rel-
evant coherence timescale for resolved images is still at

least
(

θuv

20 µas

)(
D

1 kpc

)(
V⊥

50 km/s

)−1
× 17 hours. Conse-

quently, a VLBI observation will typically only sample a

single realization of the scattering, so it is necessary but
challenging to distinguish intrinsic image features from
scattering-induced features.

Further difficulties in developing a successful scattering
mitigation framework for radio observations are apparent
from Eq. 2. The imprint of scattering is stochastic, scale-
dependent, and variable across an image. Unlike blur-
ring of the ensemble-average image, single-epoch scatter-
ing cannot be unambiguously identified or removed (even
with a perfect reconstruction of the scattered image), so
mitigation frameworks must distinguish intrinsic struc-
ture from scattering using a statistical approach. Also,
the scattering can introduce large variations in interfer-
ometric visibilities that are strongly correlated among
groups of visibilities with similar baselines and frequen-
cies. In this regard, the imprint of scattering is simi-
lar to amplitude and phase calibration errors, which can
likewise be correlated over long periods of time. How-
ever, the scattering is not a station-dependent effect, so
it cannot be inverted by a suitable choice of complex,
time-variable station gains. And because the imprint of
refractive noise depends on the unscattered image, the
refractive noise from scattering cannot be assessed inde-
pendently of the imaging process (e.g., by simply adding
additional terms to the error budget of measured visibil-
ities).

Despite these difficulties, the scattering still exhibits
many convenient properties. For example, the scattering
is not significantly birefringent and it has a deterministic
scaling with frequency (φ ∝ λ and r2F∇φ(r) ∝ λ2). After
averaging over time to approach the ensemble-average
regime, the scattering reduces to a convolution with a
deterministic kernel. And, in some cases, the statistical
properties of the scattering, such its time-averaged power
spectrum, Q(q), may be well known from previous mea-
surements.

3.2. Mitigation Framework

We now develop a strategy that utilizes known proper-
ties of scattering while accounting for unknown, stochas-
tic perturbations. Our general procedure is analogous to
adaptive optics, but it does not mitigate the scattering
through instrumentation (either physically or digitally,
through compensating station-based phases). Because
of this fundamental difference and because of the depen-
dence on specified statistical properties of the scatter-
ing, we will refer to this new mitigation framework as
“stochastic” optics.

To proceed, we use the approximate representation of
the scattered image given in Eq. 2. For the purposes
of scattering mitigation, the most important property of
Eq. 2 is that the scattered image is described entirely
in terms of the ensemble-average image and its large-
scale, refractive perturbations (see Figure 2). For image
reconstructions, it is not necessary to expand beyond
Ia(r) ≈ Iea

(
r + r2F∇φ(r)

)
in Eq. 2. In fact, the linear

expansion in the second line of Eq. 2 is not constrained
to be positive and so typically produces a faint halo of
negative flux around bright regions in the image, so it
may be advantageous to keep the first form. However,
for simplicity, we will employ the linear approximation
for the remaining discussion and results.

We assume that the unscattered image Isrc(r) and the
large-scale phase screen φ(r) are unknown but that the
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diffractive kernel G(r) and the time-averaged scattering
power spectrum Q(q) are known. The imaging problem
is then to use a set of measured visibilities sampled from
the scattered image Ia(r) to simultaneously estimate the
pair of images Isrc(r) and φ(r).

3.3. Discrete Representation of the Scattering Screen

For our mitigation framework, φ(r) is most naturally
represented in the Fourier domain. The Fourier compo-
nents φ̃(q) =

∫
d2rφ(r)e−iq·r are uncorrelated, complex

Gaussian random variables. The time-averaged power
spectrum is given by〈∣∣∣φ̃(q)

∣∣∣2〉 = λ2AφQ(q), (3)

where Aφ is the screen area over which the Fourier trans-
form is computed (see, e.g., Blandford & Narayan 1985;
Goodman et al. 1987).

We parametrize the scattering phase screen using an
N ×N grid of Fourier coefficients φ̃s,t:

φ`,m =
1

F 2

N−1∑
s,t=0

φ̃s,te
2πi(`s+mt)/N (4)

≡ λ

F

N−1∑
s,t=0

√
Q(s, t)× εs,te2πi(`s+mt)/N.

In this expression, F is the image field of view ex-
pressed as a transverse length on the scattering screen
(i.e., F 2 = Aφ). The image resolution is then F/N , and
the spectral resolution is 2π/F . We have further sim-
plified the representation of the conjugate screen phase
by introducing a set of standardized, complex Gaussian
random variables εs,t ≡ φ̃s,t/

√
Q(s, t) (i.e., 〈|εs,t|2〉 = 1).

To ensure that φ`,m ∈ R, we require that εs,t = ε∗−s,−t
(where negative indices are wrapped: −s → N − s for
s > 0). And because a constant offset of the phase does
not affect the scattered image, we set the mean phase
to be zero: ε0,0 = 0. The unknown refractive scattering
screen φ(r) is then parameterized by Nφ ≡ (N2 − 1)/2
independent complex elements of εs,t.

Once εs,t has been specified for a particular field of
view, the corresponding scattering can be computed for
that field of view for any desired observing wavelength.
Because φ`,m ∝ λ (from the cold plasma dispersion law)

and rF ∝
√
λ, the refractive steering angles have a deter-

ministic wavelength dependence: r2F∇φ(r) ∝ λ2. Note
that these scalings are independent of the power-law pa-
rameter α of the phase and density fluctuations, which
instead governs the shape of the diffractive blurring ker-
nel and the relative power in phase fluctuations at differ-
ent wavenumbers.

3.4. Imaging Procedure

Image synthesis via stochastic optics simultaneously
estimates the pair of images Isrc(r) and φ(r) over a pre-
scribed field of view. These are parameterized by the two
discrete arrays Isrc and ε. As with all VLBI imaging, the
problem of image reconstruction is ill-posed and must be
regularized. Many regularizers are commonly used for
imaging (see, e.g., Thiébaut 2013; Bouman et al. 2016);

for specificity, we will use the standard maximum en-
tropy method (MEM; see Narayan & Nityananda 1986)
to regularize the unscattered image Isrc.

The conventional imaging approach (which has no
scattering mitigation) is to find the image Isrc that max-
imizes the objective function

J = S(Isrc;B)− αVχ
2
V. (5)

In this expression, S(Isrc;B) denotes the entropy func-
tion for the unscattered image, and χ2

V represents a chi-
squared for whatever data products are used as part of
the imaging. These data products can include complex
visibilities that have been self-calibrated, the bispectrum,
or the set of all closure amplitudes and phases, for in-
stance. We have also included a bias image, B, which
can optionally be used to refine the imaging according
to a priori expectations for the image extent or mor-
phology. αV is a “hyperparameter” that controls the
relative weighting of the entropy and data terms. It
can be adjusted manually or automatically to yield the
expected χ2

V for a satisfactory image (e.g., Cornwell &
Evans 1985). Scattering mitigation techniques based on
deconvolution or “deblurring” can also use this frame-
work by modifying the data chi-squared term, instead
using visibilities and noise that have been appropriately
scaled (we discuss these techniques in detail in §4.2).

This imaging framework can be motivated through a
Bayesian approach wherein the objective function J is
associated with the log posterior probability of the re-
constructed image. With this perspective, the exten-
sion to include scattering is straightforward. Because
the scattering is defined by an array ε of independent,
standardized, complex Gaussian random variables, the

log likelihood of ε is simply lnL = −
(
χ2
φ +Nφ lnπ

)
,

where χ2
φ ≡

∑
|εs,t|2 and the sum ranges over only the

Nφ independent, non-zero elements εs,t. Thus, to image
both the source and the scattering, one can maximize the
objective function

J = S(Isrc;B)− αVχ
2
V − αφχ2

φ. (6)

Note that χ2
V now must be calculated with respect to

the scattered image Ia, which is a function of Isrc, ε, and
the ensemble-average scattering kernel G(r) and power
spectrum Q(q) (see Eq. 2 and Eq. 4). The addition of χ2

φ

to the objective function ensures that the power in the
estimated screen phases φ`,m is compatible with Q(q).
We have included an additional hyperparameter αφ to
control the relative strength of this regularization.

A convenient property of Eq. 6 is that high-frequency
elements of εs,t that correspond to finer angular scales
than the array resolution (and are therefore uncon-
strained by the visibility data) will approach 0 upon
successful convergence to a maximum in J . Because
of this property, the resulting normalized value N−1φ χ2

φ

may be much less than unity after successful conver-
gence, depending on how the pixel resolution compares
with the nominal array resolution. To avoid this result
and to reduce the complexity of the image synthesis, one
could limit the number of Fourier components in ε to
model only those angular scales that are accessible to
the participating baselines. However, in our imaging
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examples later, we do not limit the number of Fourier
components in ε; we instead assess suitable convergence
by examining the maximum value of the reconstructed
|εs,t|. Because the true values |εs,t| are each drawn from
a Rayleigh distribution, the maximum of n such values is
highly peaked and insensitive to n; specifically, the maxi-
mum is an approximately Gaussian random variable with
mean

√
lnn and standard deviation 0.5/

√
lnn (Thomp-

son et al. 2001). The applicable n is roughly the number
of beams per image, which is characteristically between
102 and 502 for Sgr A∗ at millimeter wavelengths (see
the examples in 3.5). Thus, as a rough rule of thumb,
we expect max (|εs,t|) ∼ 2.5, and we adjust the hyperpa-
rameter αφ accordingly.

Our particular choice of objective function could eas-
ily be adapted to whatever regularization for the unscat-
tered image is desired, although there is not an obvious
extension to different classes of imaging algorithms such
as CLEAN (Högbom 1974). Eq. 6 can also be generalized
to image multiple frequencies or polarizations simultane-
ously (see, e.g., Chael et al. 2016), and it can incorporate
temporal evolution of the scattering using the standard
“frozen-screen” approximation (Taylor 1938).

3.5. Example Reconstructions

We now provide example image reconstructions using
stochastic optics. We will begin with an example that is
illustrative but physically implausible before considering
more realistic unscattered images. In all cases, we will
use the measured scattering properties of Sgr A∗. Specif-
ically, we assume that the diffractive kernel is an ellip-
tical Gaussian with FWHM of {1.309, 0.64} × λ2cm mas
and with the major axis position angle 78◦ east of north
(Bower et al. 2006). We assume that the large-scale
power spectrum follows a Kolmogorov scaling, α = 5/3,
which now has tentative support for Sgr A∗ (Gwinn et al.
2014). We further assume that the large-scale power has
the same anisotropy as the diffractive kernel, and so we
use the form (Johnson & Narayan 2016; Eq. 6)

Q(q) = 2απα
Γ (1 + α/2)

Γ (1− α/2)
λ−2 (r0,xr0,y)

−α/2
(7)

×
[(

r0,x
r0,y

)
q2x +

(
r0,y
r0,x

)
q2y

]−(1+α/2)
,

where {x, y} are the coordinates aligned with the major
and minor axes of the diffractive kernel. We adopt a
scattering screen located at a fractional distance of 0.30
to the source (M = 0.43) (Bower et al. 2014). This gives
r0,x = 412λ−1 km and r0,y = 844λ−1 km.

We implemented the scattering and stochastic optics
in Python by extending a library that was originally
developed for polarimetric synthesis imaging (https://
github.com/achael/eht-imaging; Chael et al. 2016).
Because it is straightforward to estimate analytic gradi-
ents of J , even when the scattering terms are included
(Eq. 6), the imaging does not require significant com-
puting resources. For the images in this section, we used
reconstructions with 55×55 pixels, which each took only
a few minutes to generate on a personal computer.

For each image, we generated synthetic data accord-
ing to projected array configurations and performance
in 2017 (see Table 1). Although system equivalent flux

Table 1
Array Parameters for Example Reconstructions.

Site SEFD (Jy)

3.5mm (GMVA)

VLBA (×8) 2500
Green Bank Telescope (GBT) 137
Large Millimeter Telescope (LMT) 1714
ALMA 75

1.3mm (EHT)

Submillimeter Array (SMA) 4000
Submillimeter Telescope (SMT) 1100
LMT 1400
ALMA 100
IRAM 30m 1400
NOEMA single dish 5200
South Pole Telescope (SPT) 9000

Note. — Expected VLBI arrays in 2017. The VLBA at 3.5 mm
includes Fort Davis, Pie Town, Los Alamos, Kitt Peak, Mauna Kea,
Brewster, North Liberty, and Owens Valley (each VLBA site has an
estimated SEFD of 2500 Jy). At 3.5 mm, the expected bandwidth
is 512 MHz; at 1.3 mm, the expected bandwidth is 4 GHz. Array
parameters at 3.5 mm were taken from http://www3.mpifr-bonn.
mpg.de/div/vlbi/globalmm/. Parameters at 1.3 mm were taken
from http://www.eventhorizontelescope.org/proposal.html.

densities (SEFDs) are higher at 1.3 mm than at 3.5 mm,
the observing sensitivities are comparable because of the
wider recorded bandwidth with current 1.3 mm systems
(4 GHz vs. 512 MHz). To simplify the imaging imple-
mentation and comparisons, we generated data with ex-
pected thermal noise but no systematic uncertainties.
In the future, we will develop extensions that account
for systematic uncertainties, both through the use of
data products that eliminate these uncertainties (such
as the bispectrum, closure phases, and closure ampli-
tudes) and through iterative self-calibration. These ex-
tensions will be a critical precursor to using stochastic
optics on actual VLBI data, but our primary focus here
is simply to evaluate whether or not stochastic optics can
reliably decouple the intrinsic and scattering structure
and to assess its performance relative to existing miti-
gation strategies. We used the standard entropy func-
tion S(I) = −

∑
`,m I`,m ln (I`,m) (Frieden 1972; Gull &

Daniell 1978).
For each image reconstruction, we began with an or-

dinary MEM reconstruction. We followed the procedure
shown in the upper half of Figure 1 from Chael et al.
(2016), repeatedly blurring the converged image and re-
imaging to help ensure that the final solution was a global
maximum for J . We then used the resultant image (an
approximation of the average image) as an initial guess
and bias image for Isrc and then imaged the data using
the stochastic optics framework. We again repeatedly
blurred and re-imaged the data to ensure global conver-
gence. We also re-initialized the phase screen to be uni-
formly zero for each of the repeated imaging steps. With
this procedure, all of the images converged successfully
without user intervention or supervision.

Figure 4 shows the results of stochastic optics when ap-
plied to the scattered ring shown in Figure 2. Although
this model is not physically motivated, we set the total
flux density of the ring to be 3.4 Jy, matching Sgr A∗

at 3.5 mm (Lu et al. 2011), so that the thermal noise
in our synthetic data was roughly consistent with obser-

https://github.com/achael/eht-imaging;
https://github.com/achael/eht-imaging;
http://www3.mpifr-bonn.mpg.de/div/vlbi/globalmm/
http://www3.mpifr-bonn.mpg.de/div/vlbi/globalmm/
http://www.eventhorizontelescope.org/proposal.html
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Figure 4. The leftmost panels show the ring model from Figure 2 before and after scattering at 3.5 mm. The remaining three panels
compare three image reconstruction strategies: (center) MEM with no scattering mitigation, (center right) MEM with “deblurred” visibilities
(Fish et al. 2014), and (right) stochastic optics. Following the methodology of Chael et al. (2016), each of the reconstructions is convolved
with half of the CLEAN beam (the full beam is indicated in the lower right). The color scale of each image is linear and is indicated on
the right.

Figure 5. The leftmost panels show simulated images of Sgr A∗ at 3.5 mm (top) and at 1.3 mm (bottom) before and after scattering.
The unscattered 3.5 mm image is a 130µas circular Gaussian with a total flux density of 3.4 Jy, which roughly matches the observed size
and flux density of Sgr A∗ at this wavelength (Lu et al. 2011; Ortiz-León et al. 2016), while the unscattered 1.3 mm image is a ray-traced
semi-analytic accretion flow model for Sgr A∗ with a total flux density of 2.4 Jy (Broderick et al. 2016). For reference, the dotted circle
indicates the circular ring corresponding to the black hole “shadow” for Sgr A∗ (Bardeen 1973; Luminet 1979; Falcke et al. 2000). The
remaining panels compare three image reconstruction strategies: (center) MEM with no scattering mitigation, (center right) MEM with
“deblurred” visibilities, and (right) stochastic optics. As in Figure 4, the color scale of each image is linear, and each of the reconstructions
is convolved with half of the CLEAN beam (the full beam is indicated in the lower right). For these examples, the reconstructions at the
two frequencies were performed independently.

Figure 6. Simulated and reconstructed phase screens for the examples of Figure 5. For these comparisons, in addition to setting ε0,0 = 0
we also set ε±1,0 = ε0,±1 = 0 to eliminate any overall image shift from scattering, which is degenerate with the choice of centroid for the
unscattered image in these examples. The reconstructed phase screen at 3.5 mm is more accurate than at 1.3 mm because there are more
baselines that are dominated by refractive substructure (see Figure 3). In each case, the reconstructed phase screen is only constrained
near regions of the image with non-zero flux density in the ensemble-average image.
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Figure 7. Same as the bottom panels of Figure 5, except that the scattering and observations correspond to 345 GHz instead of
230 GHz. In this case, the three different reconstructions all give similar results, and the differences between MEM and stochastic optics
are insignificant.

Figure 8. Comparison of stochastic optics reconstructions when the assumed value of α is varied (the simulated images have α = 5/3).
Reconstructions that assume α = 1.46 slightly underpredict the level of substructure, resulting in synthesized images with more noticeable
remaining artifacts from refractive scattering; reconstructions that assume α = 1.86 slightly overpredict the level of substructure, resulting
in synthesized images that are overly smooth. However, these changes are relatively mild, especially at 1.3 mm (e.g., the reconstruction
with α = 1.46 even has a slightly lower MSE than the reconstruction with the correct value of α).

vations. Figure 4 compares reconstructions with MEM,
with MEM after “deblurring” the measured visibilities
(see §4.2), and with stochastic optics. Stochastic optics
easily outperforms the alternatives, and the remaining
artifacts — i.e., bright antipodal lobes — are primarily
a result of the restoring beam, which produces brightest
regions when the major axis of the beam is tangent to the
ring (an anisotropic scattering kernel has the same effect;
see Figure 2). Note that stochastic optics successfully re-
moves much of the diffractive blurring and also corrects
the large-scale image distortions that are apparent in the
deblurred reconstruction.

Figure 5 compares reconstructions for more realistic
unscattered images at 1.3 and 3.5 mm. Although the
improvement with stochastic optics is again evident from
visual inspection, we can also quantify the improvement
using standard fidelity metrics such as the (normalized)
mean squared error (MSE):

MSE =

∑
i,j

(
Ii,j − I ′i,j

)2/∑
i,j

I2i,j

 , (8)

where Ii,j is the model image and I ′i,j is the reconstructed

image. For the 3.5 mm images in Figure 5, the MSE is
0.188 for the direct reconstruction with MEM, is 0.189
for MEM with deblurring, and is 0.021 with stochastic
optics. For the 1.3 mm reconstruction, the MSE is 0.101
for direct MEM, is 0.092 for MEM with deblurring, and
is 0.062 with stochastic optics.

Figure 7 shows a reconstruction at 345 GHz (0.87 mm).
Although there is not yet active VLBI at 345 GHz, this
example illustrates the role of scattering mitigation on
imaging when the scattering is minimal. We adopted the
same source and array parameters as the 1.3 mm example
in Figure 5 (but note that some sites, such as the LMT
and Pico Veleta do not currently have a 345 GHz receiver,
and realistic SEFDs will be significantly larger). In this
case, the MSE is 0.034 for direct MEM, is 0.021 for MEM
with deblurring, and is 0.018 with stochastic optics. In
particular, deblurring and stochastic optics provide very
similar results for this example because the array has no
baselines that are significantly influenced by refractive
substructure.

These examples have assumed that the reconstruction
is done with complete knowledge of the time-averaged
scattering statistics. Figure 8 shows reconstructions



10 Michael D. Johnson

when the assumed value of the power-law exponent α is
incorrect for stochastic optics reconstructions (the simu-
lated image has α = 5/3). Because the refractive noise on
a typical baseline |b| ∼ r0 is approximately proportional
to (r0/rF)2−α (see Johnson & Gwinn 2015), assuming
lower/higher values of α will underestimate/overestimate
the refractive noise. Thus, reconstructions that as-
sume α = 1.46 have “under-mitigated” the scattering,
while reconstructions that assume α = 1.86 have “over-
mitigated” the scattering. Nevertheless, the image re-
constructions are fairly robust to these significant errors
in the assumed α, and they still significantly outperform
both deblurring and direct reconstructions without mit-
igation.

4. COMPARISON WITH EXISTING MITIGATION
STRATEGIES

As the reconstructions in §3.5 demonstrate, stochastic
optics provides effective scattering mitigation, even with
only a single observing epoch. We now relate stochastic
optics to existing scattering mitigation strategies.

4.1. Comparison with Adaptive Optics

We have already discussed some similarities and differ-
ences between stochastic optics and adaptive optics, but
we now summarize and extend these comparisons:

• Scattering Regime: Adaptive optics miti-
gates observations in the weak-scattering regime,
whereas stochastic optics mitigates observations in
the strong-scattering regime. For imaging compact
but resolved sources, the most significant difference
between these regimes is that the dominant effect of
strong scattering is image blurring, while the dom-
inant effects of weak scattering are speckling and
image wander.

• Chromatic vs. Achromatic Scattering: Op-
tical scattering in the atmosphere is nearly achro-
matic (Edlén 1966; Thompson et al. 2001), whereas
radio scattering in the ISM is steeply chromatic
(scattering angles are proportional to λ2). Con-
sequently, multi-frequency synthesis may signif-
icantly improve scattering mitigation for radio
imaging.

• Tip-tilt: VLBI observations are not usually sen-
sitive to the absolute position of an image, which
requires absolute phase referencing. Consequently,
the lowest-order (and most important) correction
of adaptive optics – “tip-tilt” to correct for image
wander – is typically not required for VLBI.

• Guide Stars: Adaptive optics requires a bright
point source (either a natural source or an artificial
laser guide star) that is near the target (i.e., within
the isoplanatic angle). Stochastic optics does not
require a nearby point source and instead uses the
known time-averaged power spectrum of the scat-
tering to estimate the scattering screen via regu-
larized minimization. Moreover, because the iso-
planatic angle for refractive scintillation is equal to
the scatter-broadening angle (see §2.1), a scattered
point source would have to be within the target
scattered image to aid mitigation. For example,

the Galactic Center magnetar, SGR J1745-29, is
2.4′′ from Sgr A∗ (Bower et al. 2015) – thousands
of times the isoplanatic angle at millimeter wave-
lengths – so cannot be used to mitigate the refrac-
tive scattering of Sgr A∗.

• Timescales: At optical wavelengths, the coher-
ence timescale is milliseconds, whereas the rele-
vant coherence timescales for radio imaging range
from a day to weeks. Consequently, radio-to-
submillimeter observations only need to recon-
struct a single scattering screen for an entire ob-
serving track, but single-epoch images are also sen-
sitive to spurious image features from scattering.

• Observables: Adaptive optics dynamically per-
turbs the incident wavefront to correct images
that are sampled directly using a filled aperture.
Stochastic optics synthesizes images using a sparse
set of measurements in the visibility domain.

• Implementation: At optical wavelengths, wave-
front corrections must be performed in real-time;
radio interferometers coherently record the incom-
ing signal so can perform scattering mitigation in
post processing.

These comparisons show that stochastic optics has many
advantages over adaptive optics (and other mitigation
strategies at optical wavelengths), which help to over-
come the lack of natural or artificial guide stars.

4.2. Comparison with Deblurring and Deconvolution

When the dominant measured effect of scattering is
diffractive image blurring, simpler mitigation strategies
such as “deblurring” and deconvolution can be effective
(Fish et al. 2014). These are motivated by the determin-
istic convolution of scattering in the ensemble-average
scattering regime (see §2). Complex visibilities V (b) of
the scattered image are simply those of the unscattered
image, multiplied by G̃(b) = e−

1
2Dφ(b/(1+M)). In this

regime, scattering mitigation is straightforward: one sim-
ply divides each measured visibility by G̃(b) (and also
divides the respective thermal noise by the same factor
to preserve the signal-to-noise ratio) and then proceeds
with standard synthesis imaging of the rescaled visibili-
ties. After this correction, the action of scattering is only
to amplify the thermal noise on long baselines.

Although conceptually simple, deblurring has obvious
limitations. As a specific example, VLBI of Sgr A∗ at
1.3 cm has detected refractive noise of ∼10 mJy on long
baselines (Gwinn et al. 2014). Deblurring these mea-
surements would increase their correlated flux densities
to higher amplitudes than the zero-baseline value, vio-
lating image positivity. The limitations of deblurring are
less significant for the EHT because the expected refrac-
tive noise is only 1− 2% of the zero-baseline flux density
(∼50 mJy; Johnson & Gwinn 2015) and the 1.3 mm scat-

tering kernel G̃(b) never falls below ≈0.2 for EHT base-
lines (see Figure 1 of Fish et al. 2014). Consequently, de-
blurring will not produce unphysical images but will still
tend to produce overly compact image reconstructions
with artificial “clumps” of high flux to compensate for
the substructure (see Figure 5). Moreover, our imaging
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simulations suggest that deblurring should not be used
for imaging Sgr A∗ at wavelengths longer than 1.3 mm.

Fish et al. (2014) has also discussed other image de-
convolution approaches to mitigate scattering, such as
the Wiener deconvolution, which could downweight long
baseline measurements to account for their refractive
noise. However, these methods must also be applied with
caution because refractive scattering does not correspond
to a convolution of the unscattered image with a position-
independent kernel (see Johnson & Gwinn 2015). An-
other problem with the Wiener deconvolution is that
it assumes that noise is applied in the image domain,
whereas thermal and systematic noise in VLBI is in-
stead added in the visibility domain. Finally, the Wiener
deconvolution assumes that the added noise is indepen-
dent of the unscattered image, whereas refractive noise
is highly sensitive to the unscattered image.

Our method also differs from other approaches that
approximate the scattering as a convolution, such as op-
tical speckle interferometry (Labeyrie 1970). These ap-
proaches require that the scattering is isoplanatic with
respect to the source, which for refractive scattering
would require θsrc � θscatt (see §2.1). Because our pri-
mary cases of interest (and all the examples that we have
shown) have θsrc >∼ θscatt, this assumption is not valid.

Thus, while some of these alternative mitigation strate-
gies may provide reasonable results, they are not for-
mally consistent with the expected properties of refrac-
tive noise; consequently, a reduced data chi-squared near
unity will not generally be expected, and the success of an
imaging algorithm may be difficult to assess. In contrast,
stochastic optics is consistent with the theoretical expec-
tations for the scattering, it produces the most uninfor-
mative (as determined by the entropy function) unscat-
tered image while accounting for the expected amount of
image substructure from scattering, it produces unscat-
tered images that are both “deblurred” and forced to
be physically plausible (e.g., positive) by construction,
and the resulting images will match the data to give a
reduced chi-squared near unity. Even when deblurring
produces acceptable results because refractive effects are
minimal, stochastic optics should produce equivalent or
superior reconstructions because the refractive power is
regularized by the time-averaged power spectrum Q(q)
(see, e.g., Figure 7).

5. SUMMARY

Interstellar scattering imposes a fundamental limita-
tion on the resolution of VLBI. Without a scattering
mitigation framework, increasing the observing sensitiv-
ity, bandwidth, or even the baseline coverage will not
improve direct imaging beyond a limit set by scattering.
And although scattering limitations are often irrelevant
for VLBI, they are critical for imaging Sgr A∗ and other
heavily scattered sources with ground-based VLBI, even
at wavelengths as short as 1 mm (see Figure 1).

Stochastic optics can gracefully integrate the known
limitations of scattering while also exploiting the many
deterministic properties. For example, only one scatter-
ing screen is required to simultaneously image multiple
frequencies, multiple nearby observing epochs, and all
four Stokes parameters. Joint imaging at multiple fre-
quencies could even allow a measurement of their relative
image positions because the scattering screen provides a

common point of reference. As a related example, by
monitoring the total flux densities of intra-day variables
at multiple frequencies, Macquart et al. (2013) has esti-
mated their frequency-dependent core shifts via relative
lags caused by different reflex shifts of their diffraction
patterns.

The most important application of stochastic optics
will be VLBI imaging of Sgr A∗ that includes ALMA, as
is expected in 2017 (Fish et al. 2013). Figure 5 shows
that the simpler “deblurring” mitigation strategy de-
veloped by Fish et al. (2014) may provide a good first
approximation for EHT images of Sgr A∗ at 1.3 mm
(and it should be an excellent strategy for the EHT at
0.87 mm; see Figure 7), although the resulting images
may tend to have too much compact structure. How-
ever, deblurring should not be applied without modifica-
tion at longer wavelengths, especially when sensitive sites
such as ALMA, the GBT, and the LMT participate, since
these will bring long-baseline detections that are heavily
influenced (if not entirely dominated) by refractive noise
(see, e.g., Gwinn et al. 2014). Stochastic optics will be
critical for synthesis imaging with these data and could
also be applied for high-resolution imaging of other AGN
with RadioAstron at 18 and 6 cm.

I am grateful to Andrew Chael for guidance in imple-
menting stochastic optics in his VLBI imaging library. I
am also indebted to Ramesh Narayan, Lindy Blackburn,
Katie Bouman, and Vincent Fish for many invaluable
conversations. I thank the National Science Foundation
and the Gordon and Betty Moore Foundation (GBMF-
3561) for financial support of this work.
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