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ABSTRACT

We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the
RadioAstron ground-space radio interferometer. Here we describe this phenomenon, characterize it with averages
and correlation functions, and interpret it as the result of decorrelation of the impulse-response function of
interstellar scattering between the widely separated antennas. This instrument included the 10 m Space Radio
Telescope, the 110 m Green Bank Telescope, the 14 x 25 m Westerbork Synthesis Radio Telescope, and the 64 m
Kalyazin Radio Telescope. The observations were performed at 324 MHz on baselines of up to 235,000 km in
2012 November and 2014 January. In the delay domain, on long baselines the interferometric visibility consists of
many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by
lower spikes. The average envelope of correlations of the visibility function shows two exponential scales, with
characteristic delays of 77 = 4.1 &+ 0.3 us and 7, = 23 £ 3 ps, indicating the presence of two scales of scattering
in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains
0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly scattered paths,
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possibly from anisotropic scattering or from substructure at large angles.
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1. INTRODUCTION

All radio signals from cosmic sources are distorted by the
plasma turbulence in the interstellar medium (ISM). Under-
standing of this turbulence is therefore essential for the
proper interpretation of astronomical radio observations. The
properties and characteristics of this turbulence can best be
studied by observing point-like radio sources, where the
results are not influenced by the extended structure of the
source, but instead are directly attributable to the effect of the
ISM itself. Pulsars are such sources. Dispersion and
scattering affect radio emission from pulsars. Whereas
dispersion in the plasma column introduces delays in arrival
time that depend on frequency and results in smearing of the
pulse, scattering by density inhomogeneities causes angular
broadening, pulse broadening, intensity modulation or
scintillation, and distortion of radio spectra in the form of
diffraction patterns. The scattering effects have already been
studied extensively theoretically (see, e.g., Prokhorov
et al. 1975; Rickett 1977; Goodman & Narayan 1989;
Narayan & Goodman 1989; Shishov et al. 2003) and
observationally with ground very long baseline interferome-
try (VLBI) of Sgr A* (Gwinn et al. 2014) and pulsars (see,
e.g., Bartel et al. 1985; Desai et al. 1992; Kondratiev
et al. 2007), and with ground-space VLBI of PSR B0329
+54 (HALCA; Yangalov et al. 2001) and the quasar 3C 273
(RadioAstron; Johnson et al. 2016). Whereas the VLBI Space

techniques: high angular

Observatory Programme pulsar observations were done at a
relatively high frequency of 1.7 GHz and with baselines of
~25,000km and less, ground-space VLBI with
RadioAstron allows observations at one-fifth the frequency,
where propagation effects are expected to be much stronger,
and with baselines ~10 times longer (Kardashev et al. 2013).
Such observations can resolve the scatter-broadened image of
a pulsar and reveal new information about the scattering
medium (Smirnova et al. 2014).

In this paper, we study the scattered image of the pulsar
B0329+54 with RadioAstron. We demonstrate that the pulsar
is detected on baselines that fully resolve the scattering disk.
The interferometric visibility on these long baselines takes the
form of random phase and amplitude variations that vary
randomly with observing frequency and time. In the Fourier-
conjugate domain of delay and fringe rate, the visibility forms
a localized, extended region around the origin, composed of
many random spikes. We characterize the shape of this region
using averages and correlation functions. We argue theoreti-
cally that its extent in delay is given by the average envelope
of the impulse-response function of interstellar scattering,
sometimes called the pulse-broadening function. We find that
the observed distribution is well fit by a model that is derived
from an impulse-response function that has two different
exponential scales. We discuss possible origins of the two
scales.
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2. THEORETICAL BACKGROUND

Our fundamental observable is the interferometric visibility
V. In the domain of frequency v, this is the product of electric
fields at two antennas A and B:

Vas (v, 1) = Ex(v, DEp(v, 1). (1)

This representation of the visibility is known as the cross
spectrum, or cross-power spectrum. Because electric fields at
the antennas are complex and different, V45 is complex.
Usually visibility is averaged over multiple accumulations of
the spectrum, to reduce noise from background and the
noiselike electric field of the source. The second argument ¢
allows for the possibility that the visibility changes in time, as it
does for a scintillating source, over times longer than the time
to accumulate a single spectrum. Such a spectrum that changes
in time is known as a “dynamic spectrum” (Bracewell 2000).
The correlator used to analyze our data, as discussed in
Sections 3 and 4, calculates V45 (v, 1) (Andrianov et al. 2014).
Hereafter we omit the baseline subscript indicating baseline AB
in this paper, except in sections of Appendix A.3 where the
baseline is important.

Under the assumptions that the source is point-like and that
we can ignore background and source noise, the impulse-
response function of interstellar scattering g determines the
visibility of the source. A single delta-function impulse of
electric field at the source is received as a function g (z,) of time
t, at the observer. Here 7, is Fourier-conjugate to v and varies at
the Nyquist rate. The visibility is the product of Fourier
transforms of g at the two antennas:

Vis = 8x8y 2
where ¢ is the Fourier transform of g (z,).

We denote the typical duration of g(z,) as 7, the
broadening time for a sharp pulse. Within this time span,
g(t,) has a complicated amplitude and phase. The function
g(t,) changes over longer times, as the line of sight shifts with
motions of source, observer, and medium. This change takes
place on a timescale t,. and over a spatial scale Ss.. The
shorter and longer timescales 7. and #,. lead to our use of dual
time variables: f,, of up to a few times 7y, and Fourier-
conjugate to v; and ¢, of a fraction of #,. or more and Fourier-
conjugate to f. This duality is commonly expressed via the
“dynamic spectrum” (see Appendix A.2). If the scattering
material remains nearly at rest while the line of sight travels
through it at velocity V,, then one spatial dimension in the
observer plane maps into time, and

I = SSC/VL (3)

The averaged square modulus of g is the pulse-broadening
function G = (g(z,)g(%.)*)s. Here the subscripted angular
brackets (...)s indicate an average over realizations of the
scattering. This function is the average observed intensity for
a single sharp pulse emitted at the source. An average over
time is usually assumed to approximate the desired average
over an ensemble of statistically identical realizations of
scattering.

We derive a number of representations of the visibility and
quantities derived from it, and we show that these provide
straightforward means to extract the impulse-response function.
These functions are summarized in Figure 1 and discussed
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Figure 1. Relations among the interferometric visibility V in various domains
and functions derived from it. The fundamental observable is the visibility in
the domain of frequency v and time ¢, \7(1/, 1); this is known as the cross-power
spectrum, or cross spectrum. An inverse Fourier transform of v to delay 7 leads
to the visibility V (7, t); this is the cross-correlation function of electric fields in
the time domain (see Equation (21)). A forward Fourier transform of ¢ to fringe
rate f leads to V (7, f). A forward transform of 7 back to v produces V(v, f),
and an inverse Fourier transform of fto ¢ returns to V (v, t) The square modulus
of V (7, t) is C (7, t). The cross-correlation function in 7 of Cg for RCP and C,
for LCP is K, (AT, t). We denote the Fourier transform by § and quantities in
the domain of frequency v by the accent .

briefly here and in detail in Appendix A. In particular, visibility
in the domain of delay 7 and time ¢ is V (7, 7). This is the
correlation function of electric fields at the two antennas A and
B (Equation (21)) and is the inverse Fourier transform of
V(v, t) from v to 7. We are also concerned with the square
modulus of V (7, t) (see Appendix A.3.2):

C(r,t)=|V(r, . “)

We calculate C for right-circular polarization (RCP) and left-
circular polarization (LCP) separately and then correlate them
in delay 7 to form Kpg;, the cross-correlation between
polarizations:

Kro (AT, 1) = £ 30 Gr(T, CL(T + AT, ). (5)

Here K, is the correlation of a single measurement of Cg and
Cy, and N is the number of samples in Cg and Cj.

When averaged over many realizations of the scattering
material, (Kgy)s is related to the statistics of the pulse-
broadening function G. Most commonly, the average over
many realizations of scattering material is approximated by
averaging over a time much longer than #,; for this reason we
omit the time argument for (Kg; (A7))s. Equivalently, evalua-
tion of (Kgy (AT, fi,.x)) = (Cr (T, [ CL(T + AT, f..))r at
the fringe rate f;,.x of the maximum magnitude of Kg; yields
the same time average. For this theoretical discussion, f, . = 0;
for practical observations, instrumental factors can offset the
fringe rate from zero, so that f,x provides the most reliable
time average.
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Table 1
Diary of Observations
Epoch of Time Ground Polarizations Scan
Observations Span Telescopes Length
2012 Nov 26-29 1 hr/day GB RCP+LCP 570s
2014 Jan 1 and 2 12 hr WB, KL RCP 1170 s

For a baseline that extends much further than the scale of
scattering S,. (see Equation (32)),

(Kpp(M)s =G (1) @ G(T) ® G(T) ® G(T)
+ (1if 7 = 0). 6)

Here we introduce the symbol ® to indicate convolution, and
we denote the time-reverse of G as G_(7) = G (—71).

Our analysis method differs somewhat from Smirnova et al.
(2014), who used structure functions of intensity, visibility, and
visibility squared to study scattering of pulsar B0950+4-08 on an
extremely long baseline to RadioAstron. The two methods are
closely related theoretically. Structure functions are particularly
valuable when the characteristic bandwidth approaches the
instrumental bandwidth, and they can be extended to cases
where the signal-to-noise ratio is low, as they discuss.

3. OBSERVATIONS

The observations were made in two sessions: the first for 1 hr
each on the four successive days 2012 November 26-29, and
the second for a total of 12 hr on the two days 2014 January 1
and 2. The first session used the 10 m RadioAstron Space
Radio Telescope (RA) together with the 110 m Robert C. Byrd
Green Bank Telescope (GB). The second session used the RA
together with the 14 x 25m Westerbork Synthesis Radio
Telescope (WB) and the 64 m Kalyazin Radio Telescopes
(KL). Both RCP and LCP were recorded in 2012 November,
and only one polarization channel (RCP) was recorded in 2014
January. Because of an RA peculiarity at 324 MHz, the
316-332 MHz observing band was recorded as a single upper
sideband, with one-bit digitization at the RA and with two-bit
digitization at the GB, WB, and KL. Science data from the RA
were transmitted in real time to the telemetry station in
Pushchino (Kardashev et al. 2013) and then recorded with the
RadioAstron data recorder. This type of recorder was also used
at the KL, while the Mk5B recording system was used at the
GB and WB. Table 1 summarizes the observations.

The data were transferred via Internet to the Astro Space
Center (ASC) in Moscow and then processed with the ASC
correlator with gating and dedispersion applied (Andrianov
et al. 2014). To determine the phase of the gate in the pulsar
period, the average pulse profile was computed for every
station by integrating the autocorrelation spectra obtained from
the ASC correlator. The autocorrelation spectra Vi (v, t) are
the square modulus of an electric field at a single antenna.

In 2012 November the projected baselines to the space radio
telescope were about 60,000, 90,000, 175,000, and 235,000 km
for the four consecutive days, respectively. Data were recorded
in 570 s scans, with 30 s gaps between scans. In 2014 January
the projected baselines were about 20,000, 70,000, and 90,000
km during the 12 hr session. Data were recorded in 1170s
scans. The RA operated only during three sets of scans of 60,
100, and 120 minutes each, with large gaps in between caused
by thermal constraints on the spacecraft. The auto-level (AGC),

Table 2
Observations on Earth-space Baselines
Epoch Projected RA
Baseline Length Observing Time
x(10% km) (minutes)
2012 Nov 26 60 60
2012 Nov 27 90 60
2012 Nov 28 175 60
2012 Nov 29 235 60
2014 Jan 1 20 60
2014 Jan 2 70 100
2014 Jan 2 90 120

phase cal, and noise diode were turned off during our
observations to avoid interference with pulses from the pulsar.
Table 2 gives parameters of the Earth-space baselines observed.

4. DATA REDUCTION
4.1. Correlation

All of the recorded data were correlated with the ASC
correlator using 4096 channels for the 2012 November session
and 2048 channels for the 2014 January session, with gating
and dedispersion activated. The ON-pulse window was
centered on the main component of the average profile, with
a width of 5 ms in the 2012 November session and 8 ms in the
2014 January session. These compare with a 7 ms pulse width
at 50% of the peak flux density (Lorimer et al. 1995). The OFF-
pulse window was offset from the main pulse by half a period
and had the same width as the ON-pulse window. The
correlator output was always sampled synchronously with the
pulsar period of 0.714s (single-pulse mode). We used
ephemerides computed with the program TEMPO for the
Earth center (Edwards et al. 2006). The results of the
correlation were tabulated as cross-power spectra, Vv, 1),
written in standard FITS format.

4.2. Single-dish Data Reduction

Using autocorrelation spectra at GB, KL, and WB, we
measured the scintillation time ¢, and bandwidth
Avy. = 1/277. The results are given in Table 3. Our analysis
using interferometric data, for which the noise baseline is
absent and the spectral resolution was higher, is more accurate
for the constants 7 and 75, as discussed below, so we quote
those values in Table 3.

4.3. VLBI Data Reduction

The ASC correlator calculates the cross-power spectrum,
V(v, t), as discussed in Section 2 and Appendix A.3.1. The
resolution of the resulting cross-power spectra is 3.906 kHz for
the 2012 observations and 7.812 kHz for the 2014 observa-
tions. Because the scintillation bandwidth was comparable to
the channel bandwidth for the 2014 observations, as shown in
Table 3, and because the single recorded polarization at that
epoch prevented us from correlating polarizations to form Kg;,
as discussed in Section 5.2.3, we focus our analysis and
interpretation on the 2012 observations.
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Table 3
Measured Scattering Parameters of PSR B0329+54
EPOCh Isc AVSC War Wit T = l/kl T = l/kz
(s) (kHz) (ns) (mHz) (ps) (1s)
1 @) 3) (C) (&) (6) )
2012 Nov 114 + 2 15+£2 50+£5 20 £ 2 4.1+£03 23 +£3
2014 Jan 102 £ 2 7+2 43+3 25+3 75+03

Note. Columns are as follows: (1) date of observations, (2) scintillation time from autocorrelation spectra as the half-width at 1/e of maximum, (3) scintillation
bandwidth from single-dish autocorrelation spectra as the half-width at half-maximum (HWHM), (4) HWHM of a sinc function fit to the central spike of the visibility
distribution along the delay axis, (5) HWHM of a sinc function fit to the central spike of the visibility distribution along the fringe-rate axis, (6) scale of the narrow
component of |Kgy, (AT)| (Section 5.2.3), (7) scale of the broad component of |Kg;, (AT)| (Section 5.2.3).

5. ANALYSIS OF INTERFEROMETRIC VISIBILITY

We investigated the scattering of the pulsar from the
visibility in the delay /fringe-rate domain, V (7, f). We studied
the statistics of visibility V (7, f) as a function of delay, fringe
rate, and baseline length. If there were no scattering material
between the pulsar and the observer, we would expect for
|V (1, f)| one spike at zero delay and fringe rate with magnitude
that remains constant as a function of baseline length, and with
width equal to the inverse of the observed bandwidth in delay
and the inverse of the scan length in fringe rate. Scattering
material in between changes this picture. First, we expect the
spike at zero delay and fringe rate to decrease in magnitude
with increasing baseline length, perhaps to the point where it
would become invisible. Second, we expect additional spikes
to appear around the spike at zero delay and fringe rate. The
distribution of these spikes gives us invaluable information
about the statistics of the scattering material.

As we discuss in this section, we fitted models to the
distribution of visibility, as measured by the correlation
function Kg;, and thus derived scintillation parameters that
describe the impulse-response function for propagation along
the line of sight from the pulsar. We also computed the
maximum visibility as a function of projected baseline length,
as we discuss in detail in a separate paper (M. V. Popov et al.
20164, in preparation).

For strong single pulses the visibility in the cross spectra,
V(v, t), had signal-to-noise ratios sufficiently large for a useful
analysis. However, we decided to analyze the data from the
time series of multiple pulses. Fourier transform of the cross
spectrum, V(v, t), to the delay/fringe-rate domain yields
V (v, f) and concentrates the signal into a central region, thus
providing a high signal-to-noise ratio. The sampling rate of
individual cross spectra in the time series was the pulse period
of 0.714s, as noted in Section 4.1. The time span of cross
spectra used to form V (7, f) varied, ranging from 71.4 to 570 s,
depending on the application.

5.1. Distribution of Visibility

In Figure 2 we display the magnitude of the visibility in the
delay/fringe-rate domain, |V (7, f)|, for a 500 s time span. The
data were obtained on 2012 November 29 in the RCP channel
for a projected 200 M\ GB-RA baseline. The cross spectra,
V(v, 1), from which we obtained |V (7, f)| were sampled with
4096 spectral channels across the 16 MHz band, at the pulsar
period of 0.714 s; consequently, the resolution was 0.03125 us
in delay and 2mHz in fringe rate. As Figure 2 shows, no
dominant central spike is visible at zero delay and fringe rate,
as would be expected for an unresolved source. Our long-

baseline interferometer completely resolves the scattering disk.
Instead, we see a distribution of spikes around zero delay and
fringe rate that is concentrated in a relatively limited region of
the delay/fringe-rate domain. The locations of the various
spikes appear to be random. Because the scattering disk is
completely resolved on our long baseline, we conclude that the
spikes are a consequence of random reinforcement or
cancellation of paths to the different locations of the two
telescopes and hence interferometer phase.

In Figure 2, the distribution of the magnitude of visibility is
relatively broad along the delay axis and relatively narrow
along the fringe-rate axis. The extent is limited in delay to
about the inverse of the scintillation bandwidth,
Tye = 1/2w A, and in fringe rate to about the inverse of the
diffractive timescale t4. Within this region, the visibility
shows many narrow, discrete spikes. If statistics of the random
phase and amplitude of scintillation are Gaussian and the
phases of the Fourier transform randomize the different sums
that compose the visibility in the delay/fringe-rate domain,
then the square modulus of V (7, f) should be drawn from an
exponential distribution, multiplied by the envelope defined by
the deterministic part of the impulse-response function, as
discussed in Appendix A.

Along the delay axis, |V (7, f)| takes the general form
suggested by Figures 2 and 3: a narrow spike surrounded by a
broad distribution. We found that the central spike takes the
form of a sinc function in both delay and fringe-rate
coordinates, as expected for uniform visibility across a square
passband (Thompson et al. 2007). The widths are somewhat
larger than values expected from observing bandwidth of
16 MHz and time span of 71.4s, of w,, = 31.25 ns and
wyr = 14 mHz, respectively, probably because of the non-
uniformity of receiver bandpasses and pulse-to-pulse intensity
variations, respectively. The broader part of the distribution
takes an exponential form along the fringe-rate axis in this case;
more generally, the form can be complicated, particularly over
times longer than 600s. Traveling ionospheric disturbances
may affect the time behavior of our 92 cm observations; in
particular, they may be responsible for the 20-25 mHz width of
the narrow component in fringe rate, as noted in Table 3. We
do not analyze the broader distribution in fringe rate further in
this paper; we will discuss this distribution and the influence of
traveling ionospheric disturbances in a separate publication (M.
V. Popov et al. 2016b, in preparation). Because of the relatively
small optical path length of the ionosphere, even at A = 92 cm,
they cannot affect the cross spectrum (Hagfors 1976).

The distribution of the magnitude of the visibility in delay/
fringe-rate domain changes with baseline length. Figure 3
displays cross sections through the maximum of the
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Figure 2. Magnitude of visibility in the delay /fringe-rate domain |V (7, )|, for a 500 s time span on 2012 November 29 in the RCP channel, on the RA-GB baseline.
Visibility is normalized for autocorrelation: |V (0, 0)| = 1. The axes show instrumental offsets, including about 6 s in delay. Top: three-dimensional representation;

bottom: two-dimensional representation.

distribution of magnitude for a range of baseline lengths, as a
function of delay. The maxima lie near zero fringe rate, as
expected. Under the plausible and usual assumption that the
correct fringe rate lies at the fringe rate, f.x, Where the
distribution peaks, the cross section represents the visibility
averaged over the time span of the sample:

V(T o) = (V (T, D). @)

The top panel of Figure 3 shows this cross section through
Figure 2. The next lower panel shows the cross section for the
slightly shorter KL-RA baseline. The three lower plots give the
equivalent cross sections for 10 times and 100 times shorter

projected baselines. These three short-baseline cross sections
are qualitatively different from the long-baseline cross sections:
the visibility has a central spike resulting from the component
of the cross spectrum that has a constant phase over frequency,
as well as the broad distribution from the component that has a
varying phase over frequency. The central spike is strongest for
the shortest baseline and weaker for the next longer baselines,
as expected based on the results of Appendices A.3.1 and
A.3.2. At very long baselines the central spike is absent even
after averaging the visibility over the whole observing period,
and only the broad component is present. As expected from
Figure 2, in the delay/time domain the broad component
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Figure 3. Examples of the fine structure of the magnitude of visibility,
[V (T, fia) > as a function of delay 7, with fringe rate fixed at the maximum of
the delay/fringe-rate visibility near zero fringe rate, fiax. From lowermost to
uppermost, the curves correspond to progressively longer baselines, with the
telescopes indicated and the approximate baseline projections given in M in
parentheses. Curves are offset vertically, and the upper two magnified as the
vertical scale indicates, for ease of viewing. All curves show 71.4 s of data. The
uppermost curve is from 2012 November 29; the rest are from 2014 January,
when multiple ground telescopes provided shorter baselines. Note variation in
scattering time between epochs as given in Table 3. The uppermost panel is the
cross section of the data shown in Figure 2, but for 71.4 s integration. Visibility
is normalized as in Figure 2. The best estimate of instrumental delay has been
removed for each curve.

appears as spikes distributed over a range of about 10 us in
delay. These spikes keep their position in delay for the
scintillation time of about 100-115s, as listed in Table 3.
The character of the broad component changes with baseline
length as well: mean and mean square visibility are the same
for short and long baselines, but excursions to small and large

visibilities are more common for a long baseline (Gwinn 2001,
Equation (12)).

5.2. Averages and Correlation Functions

Averages of the visibility and averages of the correlation
function of visibility extract the parameters of the broad and
narrow components of visibility. Such averages approximate
the statistical averages discussed in Sections 2 and Appendix
A. They seek to reduce noise from the observing system and
emission of the source, as well as variations from the finite
number of scintillations sampled, while preserving the statistics
of scintillation. The averages and correlation functions allow
the inference of parameters of the impulse-response function of
propagation from the statistics of visibility.

5.2.1. Square Modulus of Visibility C

The mean square modulus of visibility,
(C(1))s = {|V(7)|*)s, provides useful and simple character-
ization of visibility. To approximate the average over
realizations of scattering (...)s, we average over many samples
in time ¢ and over bins in delay 7. We realize the average over
time by evaluating V (7, f) at the fringe rate of maximum
amplitude fi,.«, as discussed in Section 2. We also average over
16 lags in delay 7. The resulting average shows a broad
component surrounding the origin; on shorter baselines, it
shows a spike at the origin. The broad distribution samples the
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Figure 4. Cross section of the mean square visibility in the delay/fringe-rate
domain (C())s = |V (7, f,x) > along the delay axis, at the fringe rate fiax
where the magnitude of visibility peaks, close to 0 mHz. The visibilities for the
GB-RA baseline on 2012 November 28 at 21:40 UT are shown as open circles.
The visibilities were computed by an inverse Fourier transform of the spectra,
V(v, t), over 71.4s time spans, and then by averaging over six observing
scans, each 570 s long. They were then further averaged in delay, over 16
points or 0.5 ps, to smooth fluctuations. The dashed horizontal line shows the
offset contributed by background noise. The solid gray line shows the
reconstructed form given by Equation (34), offset by the noise level, with
parameters taken from the fit shown in Figure 5. The light dashed curve shows
only the narrow component of the two-exponential model. Units of visibility
are correlator units.

properties of the fine structure seen in Figures 2 and 3, and the
spike to those seen on the shorter baselines in Figure 3. We
argue in Appendix A that the spike in (C (7))s is related to the
average visibility and the broad component to the impulse-
response function.

Figure 4 shows an example of the broad component of
(C(7))s. This is estimated as |V (7, f,.,) %, by selecting the
peak fringe rate f;,.x to average in time for each of six scans,
averaging the results for the scans, and averaging over 16 lags
of delay to smooth the data. These averaging procedures serve
to approximate the average over an ensemble of realizations of
scattering. Background noise adds complex, zero mean noise to
V (7, f), with uniform variance at all lags; this adds a constant
offset to the average (C(7))s = |V (7, fo.) -

5.2.2. Correlation Function K

Using Equation (5), we estimated (Kg; (A7) )s, the averaged
cross-correlation function between the square modulus of RCP
and LCP visibility in the delay domain. (Note that (Kg; (AT))s
is not the correlation function of the average (C)s, but rather the
average of the correlation function (Czx ® Cy)s.) Because the
background noise in the two circular polarizations is uncorre-
lated, they do not contribute an offset to (Kgy (A7))s. This
allows us to follow the effects of the impulse-response function
to much lower levels than for (C)s. The correlation function
(Kgr (AT))s is thus less subject to effects of noise, and is more
sensitive to the broad component of the distribution, than (C)s.

To compute an estimate of (Kg; (AT))s, we calculated the
squared sum of real and imaginary components of V (7, ¢), the
inverse Fourier transform of the cross-power spectrum. We
formed these for each strong pulse and normalized them by the
autocorrelation functions at each antenna. From these we
formed the unaveraged correlation function Kp; (AT, t). We
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Figure 5. Example of the correlation function (Kp; (AT, f..)): on 2012

November 28, averaged over 570 s starting at 21:40:00 UT. The data were
normalized by the square root of Krz and Ky, at AT = 0. The best-fitting
parameters for a two-exponential fit of the form of Equation (35) are as
indicated.

then averaged Kg; over 570s scans to form (Kg,(AT)),.
Averaging in the time domain approximated an average over
realizations of the impulse-response function for the scattering
medium. Each 570s scan included 100-250 strong pulses,
yielding one averaged sample of (Kg; (AT, 1)), for each scan.
We obtained 22 measurements in total, with six samples of
(Kgr (AT, 1)), for the November 26, 28, and 29 observing
sessions. We obtained only four such samples for November 27
because of no significant detections of V for two scans on
that date.

5.2.3. Two Exponential Scales

Examination of the averaged cross-correlation function,
(Kgr (AT, 1)), revealed a spike at the origin and two
exponential scales for the broad component, a large one and
a small one. Figure 5 shows an example.

The spike at the origin arises from the fine structure of
scintillation in the broad component of visibility, as seen in
Figures 2 and 3. This structure is identical in RCP and LCP, so
its correlation leads to the spike.

The two exponential scales are apparent as the slopes of the
steeper and narrower parts of the distribution. We see these two
scales even for single pulses, which are strong enough to show
the two-scale structure. We did not observe these scales
without doubt in spectra from single-dish observations, because
the resulting correlation functions are more subject to noise,
gain fluctuations, and interference. The scales are both present
for (C)s, but the longer scale is seen more clearly in
(Kgr (AT))s (as comparison of Equations (34) through (36)
shows).

5.2.4. Model Fit

We formalized the two exponential scales seen for
(Kg (AT))s with a model fit. The model assumed a pulse-
broadening function with two exponential scales. Under this
assumption, a short pulse appears at the observer with average
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Figure 6. Top: distribution of long and short timescales for exponential scales
of (Krr, (AT, finax) )i~ Each pair of scales was measured for a 570 s interval on
one of the four consecutive observing days in 2012. Bottom: distribution of
magnitudes of long and short timescales.

shape:
—kT —koT
G(r) = Atkie™7 + Aykoe ™7, 72> 0 (8)
0, T <O.

The pulse rises rapidly and falls as the sum of the two
exponentials.

The assumed form for G leads to predictions for the forms of
(C) and (K, as discussed in Appendix B. For (C), we expect a
cusp at the origin and two exponentials with scales k; and k,
and different weights on either side. For (K), correlation
smooths the cusp at the origin, producing a smooth peak, with
the same exponential scales appearing to either side.

Figure 5 shows the best-fitting model of this form for the
data shown there. This model has parameters

A /A, = 0.33 )
ki = 1/4.3 ps (10)
ky = 1/23 ps. (11)

The model reproduces the two scales and the smooth peak well.
The model also predicts the magnitude of the spike accurately,
with zero average visibility p,, = 0.

The model shown in Figure 4 shows the model for C,
reconstructed using Equation (34) with parameters from the fit
to Figure 5. The two scales appear in the model, although the
offset from noise contributes at large delay 7. As the figure
shows, a single exponential does not fit the model well: the
narrow component is satisfactory at small 7, but falls well
under the data at larger 7. A high-winged function such as a
Lorentzian can fit C well, but the rounded peak leads to a very
wide peak for K that cannot match the data, and the inversion to
a G(r) that remains finite, and is zero for r < 0 as causality
demands, is problematic.

The best-fitting scales and the magnitudes of the two
contributions varied from scan to scan, but in a manner that was
consistent with our finite sample of the scintillation pattern and
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the inhomogeneous averaging of pulses with different inten-
sities. We show a histogram of the results of our fits to 570 s
intervals in Figure 6. On 2012 November 26-29, the shorter
scale averaged to 77 = 4.1 & 0.3 us, and the longer scale to
T, = 225 £ 2.9 us. The scales had a relative power
of A2/A1 = 0.38.

6. DISCUSSION

On a long baseline that fully resolves the scattering disk, as
Figure 3 shows, we observe multiple sharp spikes in the
visibility V (7, f) as a consequence of the variation of the
amplitude and phase of visibility (see also M. V. Popov et al.
2016a, in preparation). The characteristic region of that
variation, A7 - Af, reflects the product of the inverses of the
scintillation bandwidth A7 ~ 1/2wAv. and the scintillation
timescale Af =~ 1/27t,.. These quantities are the width in time
of the impulse-response function and the time for the impulse-
response function to change as the line of sight to the observer
moves through the scattering material.

Detailed examination of the correlation function of visibility
Kgi (AT, t) reveals the presence of two characteristic, expo-
nential scales. Both scales are visible in the single-pulse
correlation functions of RCP and LCP, as well as in the
correlation function (Kg; (AT)), averaged over 570 s shown in
Figure 5. For an assumed screen distance of half the pulsar
distance of D = 1.03™013 kpc (Brisken et al. 2002), the two
scales correspond to diffractive scales of

[dl:i /2 =23 x 10°cm
27\ en

[d2 :i 3 =1.0 x 109 cm. (12)
2 \J CcTy

The diffractive scale is the lateral distance at the screen where
phases decorrelate by a radian (Narayan 1992). The refractive
scale gives the scale of the scattering disk:

ly=crD =19 x 10 cm
€r2 = 1[C’]’zD =46 x 1013 cm. (13)

In contrast, Britton et al. (1998) measured angular broadening
for PSR B0329+54 of 0y < 3.4 mas at v = 325 MHz, where
0y is the full width of the scattered image at half the maxium
intensity. This corresponds to a refractive scale of
{, = (04/~8In2)D/2 < 1.1 x 108 cm. This upper limit is
somewhat smaller than the values obtained from our observa-
tions, even if one takes into account the facts that the larger
scale contains only 0.38 of the power of the shorter one and
that the scattering material may be somewhat closer to the
pulsar than to the observer.

6.1. Previous Observations

Shishov et al. (2003) studied the scattering properties of
PSR B0329+54 in detail, using single-antenna observations
at 102MHz, 610 MHz, 5 GHz, and 10.6 GHz to form
structure functions of the scintillation in time and frequency
on a wide range of scales. They concluded that the scattering
material has a power-law spatial spectrum with index
a + 2 = 3.50 + 0.05, marginally consistent with the value
of 11/3 expected for a Kolmogorov spectrum, with an outer
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scale of 2 x 10" m < Ly < 10" m. Using VLBI, Bartel et al.
(1985) observed PSR B0329+-54 at 2.3 GHz and set limits on
the separation on the emission regions corresponding to
different components of the pulse profile. Yangalov et al.
(2001) observed PSR B0329+54 at 1.650 GHz with ground—
space baselines to HALCA and found that the source varied
strongly with time. They ascribed this variation to scintilla-
tion, with the scintillation bandwidth comparable to the
observing bandwidth at their observing frequency. Self-
calibration with time spans less than the scintillation time
returned a point-like image, as expected. Semenkov et al.
(2004) analyzed these data, including ground—ground base-
lines. They studied both single-antenna autocorrelation
functions Vy4 (A7) and cross-correlation functions Vg (AT).
They detected two timescales for the scintillation pattern, of
20 minutes and 1 minute. They found that the properties of
scattering could not be explained by a single, thin screen, and
further that velocities indicated relative motions within the
scattering medium.

Popov & Soglasnov (1984) had previously observed two
coexisting scales of scattering for PSR B0329+-54. They found
scintillation bandwidths of Avy = 115 Hz and Av, = 750 Hz,
measured as the 1/e point of the correlation function of
intensity at an observing frequency of 102 MHz, using the
Large Cophase Array of Puschino Observatory. The ratio of
these scales, Av,/Av; = 6.5, is larger than the ratio of
ki/k, = 5.5 that we observe. Scaled to our observing frequency
of 324 MHz, using the Av oc v?2/5 scaling appropriate for a
Kolmogorov spectrum, and converting from Av to 7 using the
uncertainty relation 7 = 1/27Av, we find that these values
correspond to 1.3 and 8 us, respectively, about a factor of 3
smaller than the scales we observe. Of course, interpolation
over a factor of 3 in observing frequency and the different
observing techniques may introduce biases, and scattering
parameters likely vary over the years between the two
measurements. Two scales of scattering have also been
observed for other pulsars (Gwinn et al. 2006; Smirnova
et al. 2014).

6.2. Origin of Two Scales

Two scales of scattering may be a consequence of a variety
of factors. Non-Gaussian statistics of scattering can produce
multiple scales, although this usually appears as a continuum of
scales rather than two different individual scales, as in a power-
law distribution or a Levy flight (Boldyrev & Gwinn 2003). A
Kolmogorov model for scattering in a thin screen does not fit as
well as our model based on a two-exponential impulse-
response function, or even as well as one based on one
exponential. A model with two discrete scales appears to fit our
data better.

One explanation is anisotropic scattering. This can produce
two scales, corresponding to the major and minor axes of the
scattering disk, as discussed in Appendix C. The ratio of the
scales of k»/k; = 5.5 corresponds to the parameter o> = 57 and
an axial ratio of 6,/6; = 1 + a? = \2(ko/k)? — 3 =74
In a simple model for anisotropic scattering in a thin screen, we
expect the ratio of power in the scales to be approximately
J1 + a?/27 (2 + a?) =~ 0.40, as shown in Appendix C. This
compares well with our observed ratio of A;/A, = 0.38.
However, our observations for ground-space baselines at a
variety of orientations do not show anisotropy. A variety of
models, involving material with varying anisotropy distributed
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along the line of sight and strong anisotropy that slips between
our long baselines, might match our data.

A second explanation is the complicated structure observed
within dynamic spectra: most commonly observed as “scintil-
lation arcs” (Stinebring et al. 2001). Recently, it has been
suggested that this structure arises from interference among
subimages, resulting from refraction by interstellar reconnec-
tion sheets (Pen & Levin 2014). This complicated structure
produces time and frequency variations on a wide range of
scales. Of course, we are considering very long baselines,
where the scintillation-arc patterns should be completely
uncorrelated between antennas. This may lead to blurring,
resulting in a two-scale correlation function without particu-
larly strong structure corresponding to the discrete arcs seen on
shorter baselines (Brisken et al. 2010). We do not see any direct
evidence of scintillation arcs, as such. The magnitude of the
visibility shows a featureless decline with increase of either of
the two dimensions |7| and |f|. The GB autocorrelation
functions do not show scintillation arcs either, for our
observations.

7. SUMMARY

We made VLBI observations of PSR B03294-54 with
RadioAstron at 324 MHz on projected baselines of up to
235,000 km. Our goal was to investigate scattering by the ISM.
These properties affect radio observations of all celestial
sources. While the results of such observations are in general
influenced by the convolution of source structure with the
scattering processes, pulsars are virtually point-like sources,
and signatures in the observational results can be directly
related to the scattering properties of the ISM.

On long baselines, in the domain of delay 7 and fringe rate f,
the correlation function of visibility V (7, f) is a collection of
narrow spikes, located within a region defined by the inverses
of the scintillation bandwidth A7 ~ 1/27Avy,. and the
scintillation timescale Af ~ 1/2nt,. For shorter baselines, a
sharp spike at the center of this region represents the average
visibility; on long baselines where the average visibility drops
to near zero, this spike is absent.

The mean square visibility, (C (7))s = (|V (1)|?)s, is well fit
with a smooth model, indicating that the visibility spikes are
the result of random interference of many scattered rays. To
form a quantity less subject to effects of noise, we convolve the
mean-square LCP and RCP visibility to form
(Kre (AT))s = (IVL(D)* ®:—a- [Vr(T)*)s. The average cor-
relation function (Kgy (AT))s shows two exponentials with
different characteristic timescales. The forms of (C (7)) and
(Kgr (1)) are well fit with a simple model that assumes that the
average pulse-broadening function G is the sum of two
exponentials with different timescales.

On 2012 November 26-29, the shorter timescale was
4.1 £ 0.3 us and the longer timescale was 23 + 3 us, with
the longer-scale exponential containing approximately 0.38
times the power of the shorter-scale exponential. This double
exponential may arise from anisotropic scattering, or from
scattered radiation at large angle, perhaps corresponding to the
subimages seen in single-dish and shorter-baseline observa-
tions. Further investigation of the properties of the image of the
scattered pulsar on long and short baselines, using these data,
will help to clarify the origin of the two scales.
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APPENDIX A
IMPULSE-RESPONSE FUNCTION AND VISIBILITY

A.l. Introduction

Under general assumptions, refraction and scattering con-
volve the electric field of a source with an impulse-response
function g. This function varies with position in the observer
plane, decorrelating over some lateral scale, and with time, as
the line of sight to the source moves with respect to the
scattering material, and as the scattering material evolves. The
task of this section is to relate the impulse-response function to
the statistics of visibility, as given by the functions C and K
introduced in Section 2.

A.1.1. Notation

The visibility V45 is the conjugated product of electric fields
at two antennas (Equation (1)). We usually omit the subscripts
indicating baseline AB on V, unless they are important for the
immediate argument. We denote the Fourier transform from the
time or delay domain (¢ or 7) to the frequency or fringe-rate
domain (v or f) by §, and its inverse by F~'. We accent
symbols with a tilde (“~) to denote quantities that depend on
observing frequency v, and the same symbols without accent
are for the Fourier-conjugate domain of delay 7 or time 7,. We
assume that the variables describing time and frequency
t,, v, T, t,f are discrete. They range from —N/2 to
N/2 — 1, where N is the number of samples in the time or
frequency span. For 7 and 7, one sample is the inverse of the
Nyquist rate, and they can span the time to accumulate a single
realization of the spectrum; for ¢ and its Fourier conjugate f one
sample is the averaging time for one spectrum, and they can
span one observation.

Our convention for normalization of the Fourier transform is
that a function % (7) normalized to unit area in the delay domain
has value unity at zero frequency: (v = 0) = 1. Conversely, if
h(v) is normalized to unit area in the frequency domain,
h(r=0)=1/N. This is the “{1, —1}” convention of
Wolfram Mathematica (Weisstein 2014). With this convention,
Parseval’s theorem takes the form

N/2-1 |oNeo
SN o@D == S R Ww). (14)
r=-N/2 v=—N/2
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A.2. Impulse-response Function

As noted above, the observed electric field of a pulsar
Es(2,) is the convolution of the electric field emitted at the
source with a kernel g that depends on scattering:

few X 7y

Eobs (2,) = Z 8(te) Esrc(to — 1) = § ® Egec
t,=0

s5)

where we introduce the symbol ® for convolution. The kernel
g is the impulse-response function; in other words, if the pulsar
emits a sharp spike, then the observed electric field of the pulse
is simply a copy of g. Because of this convolution, g is also
known as the propagation kernel; it is also known as the
Green’s function and the S matrix (Gwinn & Johnson 2011,
and references therein). Both E . and g vary at the Nyquist
rate: the inverse of the total observed bandwidth. Usually, we
assume that the intrinsic electric field of the source is white
noise at the Nyquist rate: it is drawn from a Gaussian
distribution in the complex plane at each instant (Rickett 1975).
The impulse-response function extends over a time span of a
few times 7y, representing the time over which a sharp pulse at
the source would be received. It is zero outside this relatively
narrow time window.

If the statistics of the scattering material are stationary, the
characteristic shape and scales of g will remain fixed, while
details of amplitude and phase vary on the timescale f,
(Equation (3)). An average of the squared electric field over
many impulses emitted by the source over times longer than .
will reveal the characteristic form. One simple model form for
g that includes deterministic and random parts is the product of
a nonvarying envelope g, (t,) and a random function gg, which
varies rapidly with 7, during the course of each pulse:

g(te) = gD(te) : gR(tev t)-

Both g and gp span a few times 7. Over that time span, gz
varies wildly and randomly; however, it exhibits nearly the
same form for the next pulse. Over the longer timescale
Isc > Ty, the form of the random function gz changes slowly.
For typical observations of a pulsar, such as those described in
this paper, 7. is some fraction of the width of one pulse, or a
few microseconds, whereas 7. is many pulsar periods, or many
seconds. Such situations, where a convolution may have a
slowly varying kernel, are commonly treated as “dynamic
spectra” (see Bracewell 2000, Chap. 19).

The intensity received by an observer for an electric-field
impulse at the source, averaged over many such impulses with
different realizations of the scattering material, is the square
modulus of the deterministic part of g, which we call G:

(Ibs (1) )s = G (1) = gp (1) - gh(te).

Here the subscripted angular brackets {...)s indicate a statistical
average over realizations of the scattering medium, for
example, as approximated by an average over pulses spanning
a time greater than #,.. Often, G is called the pulse-broadening
function. So that the propagation kernel leaves the intensity of
the source unchanged, when averaged over time, we set

SG ) = 1.

le

(16)

A7)

(18)
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For strong scattering, as is observed for most pulsars at most
wavelengths, we expect that many different paths, with random
amplitude and phase, will contribute to the received pulse at
each instant 7,. Therefore, we expect that the random part gz
will have the statistics of a random walk at each instant: the
observed electric field will be drawn from a circularly Gaussian
distribution in the complex plane, with zero mean. On the other
hand, the deterministic part g, sets the standard deviation of g;
it reflects how many paths, and with what strength, contribute
at each delay. This model for scintillation is closely related to
the amplitude-modulated-noise model for pulsar emission
(Rickett 1975). In this model, the electric field emitted by the
pulsar is the product of noise, drawn from a zero-mean
Gaussian distribution in the complex plane, with a more slowly
varying envelope that determines the standard deviation of the
noise at each instant.

We suppose that the random part of the propagation kernel is
completely uncorrelated in time, at the Nyquist rate, within its
span of a few 7. Then, at a location “A,”

. 1 f 7=0
(8 ter D85, + 72 D)5 = {0 -0

(19)
On the other hand, gg4 is nearly the same for each emitted
pulse; it changes only over the longer timescale f,.. The
question of how this slower variation of gz with time depends
on baseline length is much more complicated, and we discuss it
briefly below. However, if the lateral separation of the two
stations A and B is much greater than the scale of the scattering
pattern, then the random parts of g for the two stations, gg4 and
grp, are completely uncorrelated.

A.3. Visibility: Dynamic Cross-power Spectrum

As the previous discussion shows, the impulse-response
function involves three timescales: gz changes at the Nyquist
rate, gp varies over the typical span of the impulse-response
function 7, and the time for the random variations of g to
change is f,.. The dynamic cross-power spectrum provides a
useful description for these different variations (Brace-
well 2000). A single sample of the cross-power spectrum,
when averaged over time less than ., has the characteristic
scale Ay =~ 1/277, resulting from the finite span of the
impulse-response function and the uncertainty principle. The
time variation of the cross-power spectrum over times ¢ > f
captures the changes of gp.

Visibility V in the domain of frequency v and time 7 is the
product of the Fourier transforms of electric fields at stations A
and B (see Equation (1)):

Vas (v, 1) = Es(v, D Ej (v, 1). (20)
We suppose that each sample of the cross spectrum is averaged
over many realizations of the source electric field Eg., over a
time short compared with 7. This reduces noise from the
source and backgrounds.

One may represent the visibility in four domains, linked by
Fourier transforms of frequency v to delay 7, and time ¢ to
fringe rate f, as Figure 1 illustrates. In this paper we are
particularly concerned with V5 (7, t), visibility in the domain
of delay 7 and time ¢. This is the Fourier transform of Vig (v, 1).
The convolution theorem for Fourier transforms shows that
V (7, t) is the cross-correlation function of electric fields in the
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time domain:

N/2—1
> Ea(t + t)ER(t + 1. + 7).
t,=—N/2

Vap(T, 1) = (21)

Here 7, indexes individual samples of electric field, over a short
interval near the index time of the measurement of the cross-
power spectrum, £.

Visibility in the delay-rate domain,
frequency—time domain, takes the form

conjugate to the

V(T ) =5, s V(. D11 (22)
Searches for interference fringes are often conducted in this
domain: because absolute calibration of delay and fringe rate is
usually impossible for VLBI, the peak of |V (7, f)| can be used

to determine them (Thompson et al. 2007).

A.3.1. Visibility and Impulse-response Function

Visibility depends on the separation b of stations A and B, as
well as on delay and rate, or time and frequency. From
Equations (15) and (21) and the assumption that the electric
field of the source Eg. is a stationary random variable without
correlation in time, we find that visibility in the delay domain is
the cross-correlation function of g at the two stations:

Vas(7) = ga(K) @y 85(—F). 23)
This leads to the expected form of V (7): a spike at 7 = 0, with
average magnitude equal to the average correlation p,,; and a
broad component of width 7, with random amplitude, and
phase variations that increase with baseline length, correspond-
ing to the random character of gz and its decorrelation with
increasing baseline. Equations (19) and (18) show that p,, = 1
for gg4 = grg and p,p — 0 for uncorrelated gra and ggp.
Figures 2 and 3 show examples.

On intermediate baselines, the time structure of the
correlation of gz is more complicated, in a way that depends
on the geometrical distribution of the paths that contribute to
gr. For scattering material concentrated in a thin screen, for
example, the shortest-length paths result in small 7, in the
impulse-response function and also tend to appear at small
angles at the observer. Thus, at small delays correlation is high
even for rather long baselines, whereas at long delays
correlation is poor even for shorter baselines. Thus, correlation
between antennas should decrease at later times 7, within gg.
This correlation is imprecise for scattering material distributed
along the line of sight, where many deflections along the line of
sight lead to a large time lag ¢, but little or no angular
deflection at the observer’s interferometer. Moreover, in the
frequency domain, dynamic single-dish spectra can show slants
and complicated patterns (Hewish 1980; Stinebring
et al. 2001), suggesting complicated correlations of time and
delay in the observer plane. Analysis of the visibility is thus
easiest on very short baselines and very long ones.

Equations (22) and (23) provide the relation of the visibility
in the frequency—time domain to the impulse-response
function:

Viag = (@p ® 8ra) (@) @ Zny)- (24)
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Averaging the visibility over many scintillations yields the
average visibility, p,,:

<‘7AB )s = Pas- (25)

A.3.2. Square Modulus of Visibility C and Correlation Function K

The average of V (7) over many realizations of scintillations
leaves the delta-function at the origin that corresponds to the
average visibility:

(Vap(T))s = 0 + pyp 6°.

Here 6 is the Kronecker delta-function, with value 1 if 7 =0
and O otherwise.

The secondary spectrurn C (7, f) may be defined as the
square modulus of V (7, f):'

C(r. ) =V@HVI. =V HP.

This function provides information similar to |V (7, f)|, shown
in Figure 2, but is easier to deal with statistically. Because
C (7, f) is the square modulus of the complex visibility V (7, f),
background noise adds noise to C, except for the central lag,
where it may contribute a constant offset. Similarly, self-noise
will add noise with an envelope that follows the average form
of C. This behavior is in contrast to that of correlation functions
of single-dish quantities such as the intensity, where noise can
contribute to the mean correlation function.

Our long baselines fully resolve the scattered image. The
phases of scintillation elements in V (v, t) appear to be random,
and the phases of C (7, f) show no discernible patterns. An
inverse Fourier transform from fringe rate f to time ¢ leads to
C(r, 1)

(26)

27)

C(r.0) =g ;L [CT Nl

Evaluated at the fringe rate fi,., of its peak magnitude, the
secondary spectrum C(7, f, ) is a time average that
approximates an average over realizations of the scintillation

pattern of C (7, ?):

(28)

(C(T))s = C(T, froue)- 29)
The autocorrelation function of C is K:
K(AT) = C(7, )C (T + AT, 1). (30)

Note that C (7, t) appears without averaging in this expression.
Conveniently, the correlation Kz, (AT, t) between the second-
ary spectra C in the RCP and LCP eliminates some effects of
noise and interference, as noted in Section 5.2.3.

The behaviors of C and K are simplest to describe on very
short baselines, where g, (k) = gz(x) for all k and p,z = 1,
and for very long baselines, where the random parts of g, (k)
and g, (x) are completely uncorrelated, so that p,, = 0. If the
correlation of the random parts of the propagation kernels p, is
constant, then the ensemble-average values of these correlation

0 Brisken et al. (2010) define the secondary spectrum as V (7, f)V (=7, —f).
For zero baselines V(v, t) is real, so that V (7, f) = V*(—7, —f), and our and
their expressions are identical. Their expression includes phase information in
an elegant way for their short baseline, where departures from zero phase are
small. For observations on long baselines, their expression is impractical
because identification of the origin of (7, f) is not possible, as Figure 2 shows.
Consequently, the pair (7, f) and (—7, —f) cannot be combined reliably. They
also use the accent for visibility in the delay domain, although not for C,
whereas we use the accent for quantities in the frequency domain of v.
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functions are

(€@ =G © )+ () 31)
K@D =206 06860 +4,)
C T
+2E§+gwy€- (32)

Again, ;) is the Kronecker delta-function, with value 1 if 7 = 0
and 0 otherwise, and similarly for A7. The time-reversed pulse-
broadening function is G_, given by G (k) = G(—k). The
constant C; is the mean square of G: C; = -, G2.

APPENDIX B
TWO EXPONENTIALS

We consider a situation where the impulse-response function
is the sum of two exponentials with different time constants k;
and k,, with a rapid rise from G = 0 at r = 0. As we discuss
below, this may result in a variety of circumstances. We
parameterize the impulse-response function:

G (7_) _ {A]klek

In the text, we also make use of the inverse scales 71 = 1/k
and 7, = 1/k2; these can provide better physical insight. The
autocorrelation of G provides the form for (C (7))s, the mean
square visibility in the delay/time domain, as given by
Equation (31). For this impulse-response function, under the
assumption that the baseline is so long that p,, = 0, this takes
the form

1T 4+ Azkzefkﬂ 720

33
0 7 <0. (33)

%(C(AT»S = Alkl(

Aky | AL)an
ki + ko 2
Atk

A
+A2k2(— + 2

ehaldrl (34
k + ko 2

The autocorrelation function K of the mean square visibility for
this impulse-response function then takes the form

N
o (KUATD)s = (arki (1 + ki [AT]) = Gka)e 1
2
+ (ks (1 + ky |AT]) + Bky)e k21871

+ (a1 = Bk + (aa + B)ka) 657
(35)

where again 6OAT is the Kronecker delta function, and

2
A Ak

a = A2| A A
2 k+k

2
A A
a2l 1k
2 ki + ko
AiArkiky 2Arky + Ai (ki + k2)) A1k + Ay (ky + k,z)}
26)
(ki — ko) (ki + k2)?

p=

Thus, the two exponential scales 1/k;, 1/k, appear again, in K,
as do the weights A, A,.
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APPENDIX C
ANISOTROPIC SCATTERING IN A THIN SCREEN

An observer sees an anisotropic distribution of radiation
from a screen at distance D from the observer. The probability
of receiving radiation from the screen at position (6, 6,) is

2 2
0
! exp L (&) += db, do,.
2moy oy 2|\ oy oy :

37)

P(GX’ gy) =

We suppose without loss of generality that o, > o,. If the
source is at infinite distance beyond the screen, the delay 7
along this path (ignoring any contribution from the screen) is

cr =D(03 + 603) (38)

where ¢ is the speed of light. If the source is at distance R
beyond the screen, then D is replaced by RD/(R + D) in this
and subsequent equations. We convert the distribution of
angles in Equation (37) to coordinates (7, ¢), where
¢ = arctan(6,/0,). The resulting distribution of (7, ¢) is

P (7, ¢)do dr

c
=1+ a? expq —
ﬂ'DU? p{

;T (1 + o cos? qS)} dr do
O’V
(39)

where o? = 03/0)2( — 1 parameterizes the anisotropy. We

integrate over ¢ to find the pulse-broadening function:

G () dr = f " b )d dr. (40)
0

(2+a2)l s dT
2 b 0 27’2 7'2

(41)

Thus,

G(r)ydr =1 + a? exp{—

Here I is the regular modified Bessel function of order 0, and
¢y = 2Da?. Note that for  — 0, this distribution becomes the
familiar exbonential distribution, with scale 7, as expected for
o, = oy. Rickett et al. (2009) present a similar expression.

In the case of a > 0, at small 7 the distribution has the limit

2
1ImG(T)dT—> N1+ a? exp{ (2+a)7}d_7 42)
) m
At large values,
lim Iy(u) — L el 43)
U—00 2mu
so that
lim G(7)dr — /1 2 exp T d—T
T—00 27T (2 + « ) ) T
(44)

At a particular scale 7, the logarithmic derivative of G (7) is
1/7, although the coefficient depends weakly on 7. Thus, G (7)
exhibits two exponential scales: 7, at large 7, and
7 = 7m/(1 + o?/2) at small 7. The relative strength of the
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B 1 + a?
w2+ a?)

near the larger scale 7, with the larger scale being the weaker.

scales is about

A

y (45)
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