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ABSTRACT

RadioAstron space–ground very long baseline interferometry observations of the pulsar B0950+08, conducted with
the 10 m Space Radio Telescope in conjunction with the Arecibo 300 m telescope and the Westerbork Synthesis
Radio Telescope at a frequency of 324 MHz were analyzed in order to investigate plasma inhomogeneities in the
direction of this nearby pulsar. The observations were conducted at a spacecraft distance of 330,000 km, resulting in
a projected baseline of 220,000 km, providing the greatest angular resolution ever achieved at meter wavelengths.
Our analysis is based on fundamental behavior of structure and coherence functions. We find that the pulsar shows
scintillation on two frequency scales, both much less than the observing frequency, but modulation is less than
100%. We infer that the scattering is weak, but a refracting wedge disperses the scintillation pattern. The refraction
angle of this “cosmic prism” is measured as θ0 = 1.1–4.4 mas, with the refraction direction being approximately
perpendicular to the observer velocity. We show that the observed parameters of scintillation effects indicate that
two plasma layers lie along the line of sight to the pulsar, at distances of 4.4–16.4 pc and 26–170 pc, and traveling in
different directions relative to the line of sight. Spectra of turbulence for the two layers are found to follow a power
law with the indices γ1 = γ2 = 3.00 ± 0.08, significantly different from the index expected for a Kolmogorov
spectrum of turbulence, γ = 11/3.
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1. INTRODUCTION

Small-scale fluctuations in the electron density of the inter-
stellar medium (ISM) scatter radio waves from pulsars. We can
study properties of both the ISM and the pulsar magnetosphere
by measuring frequency–time characteristics of pulsar scintil-
lation on the baseline of the cosmic interferometer resulting
from scattering. Interferometry provides for the comparison of
scintillation at two different places at the same time.

The goal of the present study is to investigate the spatial
distribution of scattering along the line of sight to the pulsar
B0950+08, one of the brightest and nearest pulsars. Its dis-
tance, measured by parallax, is 262 ± 5 pc Brisken et al. 2002.
The observations were conducted at a baseline projection of
220,000 km and with a spacecraft distance of 330,000 km pro-
viding angular resolution of 1 mas—the maximum ever achieved
at meter wavelengths, on the longest baseline yet attained for
very long baseline interferometry (VLBI) observations, using
the RadioAstron orbiting antenna.

1.1. Interstellar Scattering Material

Observations suggest the presence of three components
of scattering material in our Galaxy (Smirnova et al. 2006;
Smirnova & Shishov 2008). The first is unevenly distributed
material in the space between spiral arms (component A). The
second corresponds to a cavity of depleted electron density ex-
tending as far as 300 pc from the Sun in the direction perpen-
dicular to the galactic plane and 50–100 pc in the Galactic plane

(component B; Snowden et al. 1990; Bhat at el. 1998). The
power spectra of density fluctuations for components A and B
are well described by a Kolmogorov spectrum with an index
of 11/3 (Armstrong et al. 1995; Shishov & Smirnova 2002).
The third (component C) is located only about 10 pc from the
Sun and has an increased level of turbulence. This component is
responsible for the intraday variability (IDV) of quasars at cen-
timeter wavelengths (Dennett-Thorpe & de Bruyn 2001; Rickett
et al. 2002).

As discussed in earlier papers (Smirnova et al. 2006;
Smirnova & Shishov 2008), the main contributor to the scin-
tillation of the nearby pulsars J0437-4715 and B0950+08 is
component C. The power spectrum of density fluctuations for
these pulsars is flatter than the Kolmogorov spectrum. The in-
dex of the power law is γ = 3.00 ± 0.05 for PSR B0950+08
and γ = 3.46 ± 0.20 for PSR J0437-4715. As shown by these
studies, the level of turbulence in component C is a factor of 20
higher than that in the extended region responsible for scintilla-
tion of PSR B0809+74 (Smirnova & Shishov 2008). Phillips &
Clegg (1992) assumed that the scattering material in the direc-
tion of B0950+08 was uniformly distributed, and found that the
level of turbulence was an order of magnitude lower than for
any previously measured interstellar line of sight. Their results
are also consistent with enhanced scattering in component C, at
a distance of only 10 pc.

IDV sources show large amplitude and rapid variability
caused by scintillation in component C. The timescale of these
variations is about the same as it would be for pulsars at
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centimeter wavelengths. Linsky et al. (2008) suggested that
the partially ionized surfaces of nearby interstellar clouds are
responsible for IDV. They note that observed IDV sources lie
behind such clouds and some in places where clouds collide.
The nearby scattering screen for PSR B0950+08 may have the
same origin; indeed, its line of sight passes through one of the
clouds they identify. The far edge of the Local Bubble may also
scatter PSR B0950+08. In this direction, the edge of the Local
Bubble lies at a distance of 120 to 160 pc (Lallement et al. 2003).
Smirnova & Shishov (2008) suggested the existence of strong
angular refraction in the direction to PSR B0950+08.

1.2. Orbiting Antenna and Observations

Interferometric observation of pulsars with space and Earth
antennas, for baselines of several Earth diameters, provides the
possibility of localizing the scattering layers and also allows one
to evaluate the influence of refraction on the received emission.
Shishov (2010) presents a preliminary theoretical analysis of
this approach. For the first such VLBI observations of the Crab
pulsar with ground telescopes, see Kondratiev et al. (2007). As
we discuss in Section 2.2.8, the typical scale of the scattering
pattern of a weakly scattered pulsar is the Fresnel scale, larger
than an Earth diameter. Space–Earth interferometry affords the
possibility of measuring this scale directly, rather than allowing
motions of pulsar, Earth and scattering material to carry it across
a single antenna. We make use of both interferometric and time-
lag analyses in this paper; the earlier work by Smirnova &
Shishov (2008) used only single-dish observations and provides
an interesting comparison.

Because scintillation is a stochastic process, observations
must be compared with theoretically predicted distributions.
These distributions may not have analytical forms and can be
quite difficult to compute (e.g., Gwinn 2001; Johnson & Gwinn
2013). Consequently, moments of the distributions, particularly
in the form of structure functions, provide measures of the
fundamental behavior of structure and coherence functions
(CFs). Section 2 describes this approach in the present case.

In this paper, we present results obtained from observations
of the pulsar PSR B0950+08 carried out on 2012 January
25 at a frequency of 324 MHz with the RadioAstron Space
Radio Telescope (SRT) in conjunction with the Arecibo 300 m
telescope (AR) and the Westerbork synthesis array (WB). The
RadioAstron project is an international collaborative mission
involving a free-flying satellite, Spektr-R, carrying a 10 m SRT
on an elliptical orbit around the Earth. This space telescope per-
forms radio astronomical observations using VLBI techniques
in conjunction with ground-based VLBI networks. The orbit of
the RadioAstron satellite evolves with time. It has an apogee
between 280,000 and 350,000 km, a perigee between 7000 and
80,000 km, a period of 8 to 9 days, and an initial inclination
of 51◦. RadioAstron operates at the standard radio astronomi-
cal wavelengths of 1.19–1.63 cm (K band), 6.2 cm (C band),
18 cm (L band), and 92 cm (P band). Technical parameters of
the on board scientific equipment and measured parameters have
been described in two main publications (Avdeev et al. 2012;
Kardashev et al. 2013). A glossary of symbols used in the paper
is presented in Table 1.

2. ISM SCATTERING THEORY

2.1. Overview of Model

As we discuss in Section 4, pulsar B0950+08 shows scintilla-
tion with modulation ΔI/I = m < 1, with typical bandwidth Δν

much less than the observing frequency ν. Typically, m < 100%
is observed only in weak scattering, whereas Δν < ν is observed
only in strong scattering (Cohen & Cronyn 1974). These two
regimes are distinct. In weak scattering, the difference in phase
among paths from source to observer is less than π radians, but
in strong scattering it is greater.

We suggest that a strong gradient in the column density of
refracting material—a prism—is responsible for the apparent
paradox. Such a prism will disperse the wide-band scintillation
pattern in the observer plane, so that maxima and minima
appear at different places at different observing frequencies.
Indications of strong refractive effects include the typically
“refractive” scaling of scintillation bandwidth with frequency
found by Smirnova & Shishov (2008), and the shift of the
structure function of visibility with frequency, as a function of
time lag, discussed in Section 4.3.4 and displayed in Figure 6.
Smirnova & Shishov (2008, see their Figure 10) showed that
the transition between weak and strong scattering for this pulsar
takes place in the frequency range of 100–300 MHz, with, of
course, strong scattering at lower frequencies.

We find that two screens at different distances are required to
reproduce the observed properties of scintillation. In particular,
we find that the structure function of visibility with observing
frequency is composed of two components with different
timescales and different behavior as a function of interferometer
baseline. We discuss the structure function in Section 2.2, and
present the structure functions formed from our observations
in Section 4.2. Because the scintillation is weak, the observed
scintillation pattern in the observer plane is the superposition of
the patterns from the two screens.

2.2. Characteristics of the ISM Structure Function

This paper considers interferometric observations of scatter-
ing. The interferometric visibility V is as a function of frequency,
time, and baseline is the fundamental observable. We are con-
cerned with the fluctuations of V. We analyze these fluctuations
using the fundamental behavior of structure and CFs. As we
describe in this section, we relate the modulus of the visibility,
the product of electric fields at two positions, to the product
of the intensities at those positions. The resulting expressions
are excellent when the noise level is low. In the case of a high
level of noise, it is advantageous to measure fluctuations in the
squared modulus of the interferometer cross-power spectrum
V2. In the Appendix, we derive the analogous relations that ac-
count for noise. In particular, we show that for statistics of V2 the
contributions of noise and signal are simply additive, whereas
for statistics of V or |V |, the contributions of noise and signal
are much more difficult to separate. We therefore deal with the
statistics of V2 in this paper.

2.2.1. Field and Propagation

We define h(f, t) as the electric field of pulsar emission, in the
absence of a turbulent plasma, where f = ν − ν0 is the offset
of the observing frequency ν from the band center ν0, and t is
time. This electric field h(f, t) also includes modulation by the
receiver bandpass. The field after propagation through the ISM
can be represented as (Shishov 2010)

E(ρ, f, t) = u(ρ, f, t)h(f, t), (1)

where scattering in the ISM results in the factor u(ρ, f, t),
given that ρ is the spatial coordinate in the observer plane
perpendicular to the line of sight. Here and throughout the paper
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Table 1
Glossary of Symbols

Symbol Description Defined

γ Power index of turbulence spectra Section 1
ν Observing frequency Section 2.2
ν0 Center of observing band Section 2.2
f Frequency offset Section 2.2
ρ Spatial coordinate in observer plane perpendicular to line of sight Section 2.2
Δρ Baseline of interferometer Section 2.2
E Electric field at observer Equation (1)
h(f, t) Electric field of pulsar without propagation, with bandpass Equation (1)
u(ρf, t) Propagation factor Equation (1)
V Interferometric visibility: cross-power spectrum Equation (2)
j (ρ, ρ + Δρ, f, t) Propagation factor for V Equation (4)
H(f, t) Flux density of source, with bandpass Equation (4)
〈..〉h Average over noise-like statistics of source emission Section 2.2
I Intensity: square modulus of the electric field at a single position Equation (5)
ΔI Fluctuations of intensity Section 2.2.2
� = 1, 2 Indices for two phase-changing screens Section 2.2.3
z� Distance of screen � from observer Section 2.2.3
z Distance of source from observer Section 2.2.3
x� Spatial coordinates in the plane of screen � Section 2.2.3
DS,� Spatial structure function of phase fluctuations for screen � Equation (8)
Φ� Screen phase for screen � Equation (8)
〈..〉S Average over realizations of scattering medium Equation (8)
Θscat,� Characteristic deflection angle for screen � Equation (9)
k Wavenumber Equation (9)
λ Wavelength Equation (9)
α� Power-law index of structure function for screen � Equation (9)
m Modulation index of scintillation Section 2.2.3
θ0 Refraction angle of cosmic prism Section 2.2.4
θf Angular displacement of source by cosmic prism at frequency f Equation (13)
ρf,� Displacement in observer plane of scintillation pattern of screen �, Equations (14) and (17)

caused by cosmic prism
ρt,� Spatial displacement of observer relative to Equations (16) and (19)

scintillation pattern of screen �

Vobs Observer’s velocity transverse to the line of sight Equations (16) and (19)
Vscr,� Velocity of screen � transverse to the line of sight Equations (16) and (19)
VPSR Velocity of pulsar transverse to the line of sight Equation (19)
V� Observer’s resultant velocity relative to scintillation pattern of screen � Equations (16) and (19)
DΔI Structure function of intensity variations in observer plane Equation (20)
DΔI,� Structure function of intensity variations in observer plane, for screen � Equation (21)
DΔ|j |,� Structure function of intensity variations from scintillation, for screen � Equation (22)
r� Generalized position variable including effects of refraction and Equation (24)

motion of the scintillation pattern, for screen �

βl Angle between direction of dispersion of cosmic prism θ0 and Equation (2.2.7)
velocity V � of observer relative to scintillation pattern of screen �

ϕ Angle between θ0 and baseline Δρ Equation (2.2.7)
ρFr,� Fresnel spatial scale for screen � Equations (27) and (29)
fFr,� Fresnel frequency scale for screen � Equations (31) and (32)
tFr,� Fresnel time scale for screen � Equations (33) and (34)
P Temporal coherence function Equation (35)
τ Time lag of coherence function Equation (35)
PH Temporal coherence function of source Equation (37)
Bu Spatial coherence function of scattering Equation (38)
P0 Temporal coherence function of unscattered emission Section 2.3
PS,� Contribution of screen � to temporal coherence function Equations (42), (43), and (44)
τFr Time lag of coherence function corresponding to 1/fFr Equations (43) and (44)
H0 Flux density of source integrated over frequency Equation (42)
q⊥, q|| Components of spatial frequency in plane of screen, Equation (42)

parallel and perpendicular to refraction angle θ0

〈...〉f,t Average over time and frequency Equation (46)
CCF(Δt) Cross-correlation at time lag Δt Equation (46)
tSC Timescale of scintillation Section 4.1
F Normalized spectrum Equation (47)
F Structure function Equation 48)
Δf0 Maximum frequency difference sampled Equation (51)
D(Δf, Δt) Quantified ratio of asymmetry of structure functions Equation (68)
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we use boldface type to denote vector quantities, such as ρ.
To obtain the cross-power spectrum V, i.e., the response of an
interferometer with baseline Δρ averaged over a fixed realization
of the scattering, we multiply E(ρ, f, t) by E∗(ρ +Δρ, f, t) and
average over statistics of the source electric field:

V (ρ, ρ + Δρ, f, t) = 〈E(ρ, f, t)E∗(ρ + Δρ, f, t)〉h
= j (ρ, ρ + Δρ, f, t)H (f, t), (2)

where

j (ρ, ρ + Δρ) = u(ρ, f, t)u∗(ρ + Δρ, f, t) (3)

H = 〈h(f, t)h∗(f, t)〉h.
Here, the angular brackets 〈. . .〉h with subscript h indicate an
average over the noise-like statistics of the electric field of the
source. The flux density of the source, corrected for bandpass,
is H, and the effects of scattering are expressed by j. Note that H
depends on frequency within the observed band f and on time t,
but we omit these arguments for clarity in the equations below.

2.2.2. Visibility and Fluctuations

Consider fluctuations of the modulus of the interferometer
response (the dynamic cross-power spectrum):

|V (ρ, ρ + Δρ, f, t)| = H · [I (ρ)I ∗(ρ + Δρ)]1/2
, (4)

where the intensity I is the square modulus of electric field at a
single position:

I (ρ) = j (ρ, ρ) = u(ρ, f, t)u∗(ρ, f, t). (5)

Again, note that H, j, and I depend on f and t, but we omit
these arguments for simplicity. We normalize the average flux
density of the source, so that the average over realizations of
scintillations is unity: 〈I (ρ)〉s = 1. We are concerned with the
fluctuations of intensity about this average: ΔI = I − 1.

In the regime of weak scintillation, |ΔI (ρ)| � 1, so |V (ρ,
ρ + Δρ)| can be approximated as

|V (ρ, ρ + Δρ, f, t)| ≈ H ·
(

1 +
1

2
ΔI (ρ) +

1

2
ΔI (ρ + Δρ)

)
.

(6)

Thus, fluctuations in the interferometric visibility |V (ρ,
ρ + Δρ, f, t)| are given by

|ΔV (ρ, ρ + Δρ, f, t)|
= |V (ρ, ρ + Δρ, f, t)| − 〈|V (ρ, ρ + Δρ, f, t)|〉s
≈ H ·

(
1

2
ΔI (ρ) +

1

2
ΔI (ρ + Δρ)

)
. (7)

2.2.3. Screens and Statistics

We suppose that the scattering material lies in two phase-
changing screens located at distances z1 and z2 from the
observer. The distance of the source form the observer is z.
Each screen produces some variation of phase as a function of
position. We can characterize the statistics of the phase screen by
two spatial structure functions of phase fluctuations DS,1(Δx1)
and DS,2(Δx2), where Δx1 and Δx2 are the differences of the
spatial coordinates in the plane of the phase-changing screen:

DS,�(Δx�) = 〈(Φ�(x�) − Φ�(x� − Δx�))2〉s , (8)

where � = 1, 2 identifies the screen, and Φ�(x�) is the screen
phase at x�. Here, the angular brackets with subscript s indicate
an average over an ensemble of statistically identical scattering
media.

Smirnova & Shishov (2008) showed that the spectrum of
turbulence of the ISM in the direction of PSR B0950+08
has a power-law form, ΦS(q) ∝ |q|α+2, where q is spatial
frequency. Consequently, the spatial structure functions of phase
fluctuations exhibit a power-law form as well. We describe the
structure functions of the two phase-changing screens with the
expressions

DS,�(Δx�) = (kΘscat,�|Δx�|)α� , (9)

where k = 2π/λ is the wavenumber, λ = c/ν0 is the
wavelength, and Θscat,� represents the angle of scattering at
the phase-changing screen � = 1, 2. We assume a power-
law form for the structure functions, with indices α1, α2. Note
that this equation introduces the assumption that scattering is
isotropic. We make this assumption for the rest of the paper. In
principle, effects of anisotropy could be detected by comparing
results on several baselines of comparable lengths and different
orientations. Thus, ongoing and future observations should be
able to refine the results presented here.

As was pointed out in Smirnova & Shishov (2008; see their
Figure 10), the transition from strong to weak scintillation takes
place in the frequency range 100–300 MHz. We will show in
Section 4.1 that modulation index m at frequency 324 MHz
is about 0.35, so the scintillation is weak Martin & Flatte
(1988). In other words, the fluctuations in phase introduced
from propagation are small: ΔΦ� � 2π . The modulation
indices resulting from scattering at the screens are m1 and m2,
defined formally in Equations (28) and (30) below. We can
apply weak scattering theory because for a power-law spectrum
of turbulence, the difference between approximate and exact
values of m2 does not exceed of 0.2m2 (Martin & Flatte 1988).

For a nearby screen at a distance z1 � z, we can use the plane
wave approximation, so that

DS,1(Δρ) = DS(Δx1). (10)

For a phase-changing screen at a distance z2, the structure
function of phase fluctuations at the screen is related to that
at the observer by

DS,2(Δρ(z − z2)/z) = DS(Δx2). (11)

Note that these equations describe the effects of the screen
as a “shadowgraph,” where effects of the screen are projected
directly onto the observer plane. This is characteristic of weak
scattering.

2.2.4. Cosmic Prism

We suppose that a cosmic prism, or gradient of refracting
material, is located between the pulsar and the phase-changing
screens. This prism deflects radiation from the pulsar at a
frequency-dependent refractive angle. We parameterize this
refraction using θ0, the apparent displacement of the source
location as observed from the observer plane at frequency
ν0. Similar strong angular refraction has been detected in the
direction to PSR B0329+54 from the analysis of multi-frequency
observations (Shishov et al. 2003). Smirnova & Shishov (2008)
showed that strong angular refraction exists in the direction
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to PSR B0950+08, so we assume that the refractive angle is
significantly greater than the scattering angle at either screen:

|θ0| � Θscat,1 (12)

|θ0| � Θscat,2(z − z2)/z.

Thus, our model of turbulent interstellar plasma in the direction
of the pulsar is characterized by the following parameters: θ0,
α1, α2, m1, m2, z1, z2.

2.2.5. Shifts in Frequency, Position, and Time

The cosmic prism dominates the angular deflection of the
source, and, in particular, is greater than that produced by the
screens. In the presence of angular refraction, with the dispersion
produced by the interstellar plasma, a change in frequency of f
from the fiducial frequency ν0 leads to an apparent displacement
of the source position by an angle

θf =
(

1 − ν2
0

(f + ν0)2

)
θ0 ≈ 2(f/ν0)θ0, (13)

where ν0 is the frequency at the center of the observing band.
The combination of a cosmic prism and a phase-changing

screen leads to a shift in the scintillation pattern. For a phase-
changing screen at distance z1 from the observer, and the cosmic
prism beyond the screen, the apparent displacement of the
source leads to a displacement of the scintillation pattern in
the observer plane by a distance ρf,1, given by (Little & Hewish
1966; Shishov 2007)

ρf,1 = z1θf . (14)

The farther away the screen, the greater the dispersion of the
scintillation pattern at the Earth produced by the prism beyond
the screen.

On the other hand, if the observer travels at velocity Vobs
perpendicular to the line of sight, and if screen 1 moves at
speed Vscr,1, then observer’s spatial displacement relative to the
scintillation pattern increases with the change of time Δt at
velocity V1:

ρ t,1 = V1Δt (15)

= (Vobs − Vscr,1)Δt. (16)

If this displacement is parallel to the dispersion of the cosmic
prism, then the observer will notice a shift of the scintillation
pattern in frequency, as a function of time.

For a more distant screen, at a distance z2 from the observer,
the spherical form of the waves must be taken into account:

ρf,2 = z z2

(z − z2)
θf , (17)

and

ρ t,2 = V2Δt (18)

=
(

Vobs − z

(z − z2)
Vscr,2 +

z2

(z − z2)
VPSR

)
Δt, (19)

where Vscr,2 is the velocity of screen 2, and VPSR is the velocity
of the pulsar.

Thus, a change in frequency will cause a change in the
diffraction pattern analogous to a change in position in the
direction of θ0, and a delay in time is equivalent to a change
in position in the direction of a linear combination of Vobs,
Vscr, and VPSR, for a moving observer, screen, or pulsar. These
equivalences arise because the intensity variations from weak
scintillation have wide intrinsic bandwidth: they are dispersed
only by the cosmic prism. We apply these equivalences further
in Section 2.2.7 below.

2.2.6. Formation of Structure Functions

We construct the structure function of intensity in the observer
plane:

DΔI (Δρ) = 〈(ΔI (ρ + Δρ) − ΔI (ρ))2〉s (20)

= DΔI,1(Δρ) + DΔI,2(Δρ). (21)

In weak scattering, the structure functions of the two screens add
to produce the observed structure function, as we indicate here.
We wish to relate this to the structure function for interferometric
visibility.

Consider observations of intensity at two locations in the
observer plane separated by Δρ, and separated in frequency by
Δf and in time by Δt . The structure function characterizing the
fluctuations of intensities is

DΔI,�(Δρ, Δf, Δt)

= 〈(|I�(ρ, ρ + Δρ, f + Δf, t + Δt)| − |I�(ρ, ρ, f, t)|)2〉s
= H 2

[
DΔ|j |,�(ρf,� + ρ t,�) +

1

2
DΔ|j |,�(Δρ + ρf,� + ρ t,�)

+
1

2
DΔ|j |,�(Δρ − ρf,� − ρ t,�) − DΔ|j |,�(Δρ)

]
, (22)

where � = 1 or 2 identifies the screen. This equation relates
the structure functions of intensity to those of interferometric
visibility. A similar equation provides the reverse relation:

H 2DΔ|j |,�(Δρ, Δf, Δt)

= DΔI,�(ρf,� + ρ t,�) +
1

2
DΔI,�(Δρ + ρf,� + ρ t,�)

+
1

2
DΔI,�(Δρ − ρf,� − ρ t,�) − DΔI,�(Δρ). (23)

Also note that in the short-baseline limit, the structure function
for the interferometric visibility is that of intensity, with the
correction for bandpass.

2.2.7. Equivalence of Time, Frequency, and Baseline

We can use the results of the previous section to infer the
dependence of the structure function on time and frequency
as well as baseline by noting that the cosmic prism renders a
change in time or frequency equivalent to a change in position.
We can therefore define a generalized position variable r�, which
includes the effects of dispersion on time and frequency behavior
of the scintillation pattern for each screen:

r� = ρf,� + ρ t,� + Δρ. (24)

Because we assume that the scattering in the screens is isotropic,
the structure function for each screen depends only on the
magnitude of its argument:

DΔI,�(r�) = DΔI,�(|r�|). (25)
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The direction of refractive dispersion divides the components
of the other vectors into those parallel and perpendicular to the
direction of that dispersion. The components of the vectors may
be different because the conversion of f and Δt to ρf,� and ρ t,�

differs for the screens:

|r�| = (|ρf,�|2 + |ρ t,�|2 + |Δρ|2 + 2|ρf,�||ρ t,�| cos β�

+ 2|ρf,�||Δρ| cos ϕ + 2|ρ t,�||Δρ| cos(β� − ϕ))1/2.

(26)

Here, β� is the angle between the direction of dispersion θ0 and
the velocity V� of the ray relative to screen �, and ϕ is the angle
between θ0 and the baseline Δρ.

Physically, this equation states that the structure function for
variations in intensity is that set by optics of a static screen
without refraction DΔ|j |,�(Δρ); however, refraction and motion
introduce correlation in frequency set by the scale ρf,� and in
time set by the scale ρ t,�. Note that the effects of delays in time or
changes in frequency depend sensitively on the angles β�. Note
also that DΔI,�(Δρ, Δf, Δt) is a symmetrical function of cos(ϕ),
as Equation (22) shows. Therefore, DΔI,�(Δρ, Δf, Δt = 0) is
a symmetrical function of Δf and DΔI,�(Δρ, Δf = 0, Δt) is a
symmetrical function of Δt .

2.2.8. Fresnel Scales

The Fresnel scale for a nearby screen at distance z1 is given
by

ρFr,1 = (z1/k)1/2. (27)

For a nearby screen, the structure function of intensity variations
is given by the simple relations (Prokhorov et al. 1975):

DΔ|j |,1(Δρ) = 2DS,1(Δρ) for Δρ < ρFr,1

DΔ|j |,1(Δρ) = 2DS,1(ρFr,1) ≈ 2m2
1 for Δρ > ρFr,1,

(28)

where m1 is the modulation index of the nearby layer.
In contrast, for a distant phase-changing screen, we must

account for the sphericity of the wave. Then, the Fresnel scale
of the screen ρFr,2 is given by Little & Hewish (1966) and
Shishov (2007) as

ρFr,2 = [z z2/(z − z2)k]1/2. (29)

Consequently, for a distant scattering screen,

DΔ|j |,2(Δρ) = 2DS,2 ([(z − z2)/z]Δρ) for Δρ < ρFr,2

DΔ|j |,2(Δρ) = 2DS,2(ρFr,2) ≈ 2m2
2 for Δρ > ρFr,2,

(30)

where m2 is the modulation index of a distant scattering screen.
Physically, Equations (28) and (30) represent the fact that the
diffraction pattern from a static, nonrefracting screen in weak
scattering has a scale equal to the Fresnel scale. Together with
Equation (22), these equations describe the statistics of the
diffraction pattern from a screen in the presence of a cosmic
prism, and with motions of source, screen, or observer.

2.2.9. Fresnel Scales for Frequency and Time

The Fresnel scales given by Equations (27) and (29) give rise
to corresponding scales in frequency and time through the action
of the cosmic prism, which relates frequency shifts and time
lags with changes in position via Equations (14) through (19).
Because the expressions are important for comparing theory

with observation, we present expressions for these scales here.
The Fresnel frequency scales are

fFr,1 = ν0

2θ0

ρFr,1

z1
= ν0

2θ0

√
1

k z1
(31)

fFr,2 = ν0

2θ0

ρFr,2(z − z2)

zz2
= ν0

2θ0

√
z − z2

k z z2
(32)

for a nearby and more distant screen, respectively. Note that the
frequency scale is largest for a nearby screen and decreases with
increasing screen distance. The Fresnel time scales are simply

tFr,1 =
√

z1/k

|Vobs| (33)

tFr,2 =
√

z z2/(k(z − z2))

|Vobs + VPSR(z2/(z − z2))| . (34)

Here, we assume that the velocities of the screens are small:
Vscr,1, Vscr,1 � Vobs and VPSR.

2.3. Temporal Coherence Function

The inverse Fourier transform of I (ρ, ρ + Δρ, f, t) gives the
temporal CF, averaged over statistics of the source electric field:

P (ρ, ρ + Δρ, τ, t) =
∫

df exp(2πif τ )I (ρ, ρ + Δρ, f, t),

(35)

where τ is a time lag of CF. Then, the value of P averaged over
the statistics of the turbulent medium is

〈P (ρ, ρ + Δρ, τ, t)〉s = Bu(Δρ)PH (τ, t), (36)

where

PH (τ, t) =
∫

df exp(2πif τ )H (f, t), (37)

and

Bu(Δρ) = exp

{
−1

2
DS,1[Δρ] − 1

2
DS,2

[
(z − z2)

z

]
Δρ

}
.

(38)

Here, PH (τ, t) is the temporal CF defined by the source and
Bu(Δρ) is the spatial CF of the scattered field.

Given these functions, we can characterize fluctuations of
P (ρ, ρ + Δρ, τ, t) by its second moment:

〈|P (ρ, ρ + Δρ, τ, t)|2〉s =∫
df

∫
dΔf exp(−2πiΔf τ )H (f, t)H (f + Δf, t)

× 〈j (ρ, ρ + Δρ, f, t)j ∗(ρ, ρ + Δρ, f + Δf, t)〉s . (39)

Then, we can write the mean squared modulus of P, averaged
over statistics of turbulent medium, as

〈|P (τ )|2〉s = 〈|P0(τ )|2〉s + 〈|PS(τ )|2〉s , (40)

where 〈|P0(τ )|2〉s corresponds to unscattered emission
〈|P0(τ )|2〉s = 〈P (ρ, ρ + Δρ, τ, t)〉2

s , and 〈|PS(τ )|2〉s consists
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of two parts that give the contributions of the nearby and distant
screens:

〈|PS(τ )|2〉s = 〈|PS,1(τ )|2〉s + 〈|PS,2(τ )|2〉s . (41)

Component 〈|PS,1(τ )|2〉s can be written as (Prokhorov et al.
1975; Shishov 2007)

〈|PS,1(τ )|2〉s = H 2
0 πν0

z1θ0

∫
dq⊥ΦS,1(q|| = πν0τ/z1θ0, q⊥),

(42)

where H0 is the flux density of the source integrated over
frequency, H0 = ∫

df H (f ), ΦS is a power phase spectrum,
and q|| and q⊥ are components of the spatial frequency parallel
and perpendicular to the direction of refractive angle. The power
spectrum 〈|PS,1(τ )|2〉s can also be written as

〈|PS,1(τ )|2〉s =
⎧⎨
⎩

H 2
0 m2

1

(
1

τFr,1

)
, for τ < τFr,1

H 2
0 m2

1(
(

1
τFr,1

) ( τFr,1

τ

)α1+1
, for τ > τFr,1

(43)
where τFr,1 = z1θ0/(πν0ρFr,1).

For the second component, 〈|PS,2(τ )|2〉s , we find that

〈|PS,2(τ )|2〉s

⎧⎨
⎩

=H 2
0 m2

2

(
1

τFr,2

)
, for τ < τFr,2

≈H 2
0 m2

2

(
1

τFr,2

) ( τFr,2

τ

)α2+1
, for τ > τFr,2

(44)

where τFr,2 = z2θ0/(πν0ρFr,2).
Note that the function PS(τ ) is a random function of τ . Hence,

if τ > τFr,1, τFr,2, the distribution of PS(τ ) is approximately
normal for fixed τ . Then, for a normally distributed random
complex value, we have the relationship

〈|PS(τ )|〉s =
√

π

2
(〈|PS(τ )|2〉s)1/2. (45)

If m1 ≈ m2, then 〈|PS,1(τ )|2〉s will be the primary contributor
to 〈|PS(τ )|2〉s for τ < τFr,2, while 〈|PS,2(τ )|2〉s will affect
〈|PS(τ )|2〉s predominantly for τ > τFr,2.

3. OBSERVATIONS AND INITIAL DATA REDUCTION

We observed the pulsar B0950+08 for one hour on 2012
January 25 using the RadioAstron 10 m SRT in concert with the
Arecibo 300 m telescope and the Westerbork synthesis array.
We observed dual polarizations across a 16 MHz band centered
on 324 MHz. Data were recorded continuously for 5 minute
scans with a 30 s interval after each scan to write the data to
disk.

Using the Astro Space Center correlator, we performed the
first steps of data reduction, which involved removing the
dispersion from the pulsar signal, calculating the complex
spectrum for each telescope, and calculating the cross-spectra
for all pairs of telescopes. The signal was correlated in a 15 ms
gate around the maximum of the average pulse, and the noise
was evaluated in a gate separated by 52 ms from the maximum.
For most of our analysis, we averaged the correlator output over
four pulsar periods (∼1 s) and employed a frequency resolution
of 125 kHz (128 channels), although we also used single-pulse
spectra with the same frequency resolution in some cases, as
noted below.

4. ANALYSIS AND RESULTS

4.1. Spectra and Correlation Analysis

Pulsar B0950+08 has a high level of intrinsic variability, and
even exhibits giant pulses with more than 100 times the mean
flux density (Smirnova 2012). Because this intrinsic variability
is much more rapid than that of scintillation, we normalized
each spectrum by its mean value. We also corrected the spectra
for the receiver passband, which we estimated by averaging the
off-pulse spectra over the entire observation (3570 s).

The passbands show narrow-scale interference (only one fre-
quency channel in bandwidth) throughout the entire observa-
tion. This interference increases signal in individual channels
of single-dish spectra, but reduces the gain in the correspond-
ing channels of cross-power spectra. Hence, for each spectrum,
we replaced the intensities in contaminated channels with the
mean value of two neighboring channels. Figure 1 shows sev-
eral individual pulsar cross-power spectra at different times for
the Arecibo–Westerbork baseline, prior to normalization by the
mean intensity. Two frequency scales of variability are evident:
a small scale, 30–40 channels (3.75–5) MHz, as well as a large
scale, exceeding the 16 MHz receiver band. The small-scale
structure changes only slowly with time, and remains similar
over time periods of 200 s (pulses 749 and 949) and 540 s
(pulses 1576 and 2032), whereas the character of the wider
structure changes little over the 1 hr observation.

Figure 2 shows the variability of individual pulses over the
experiment. The lower panel of the figure shows the mean
intensity 〈I 〉f of individual pulses as a function of time. Here,
the subscripted angular brackets 〈. . .〉f indicate an average
over frequency channels of one single-pulse integration. Fast
variability reflects intrinsic pulse-to-pulse variations, whereas
the slow modulation reflects scintillation. The middle panel
of Figure 2 shows the standard deviation of flux density in
individual single-pulse spectral σS(t) as a function of time. For
each spectrum, we used the autocorrelation function at a lag
of one channel (to exclude the contribution of noise) to find
σS(t). In the upper panel of the figure, we show the modulation
index m(t) = σS(t)/〈I 〉f (t) as a function of time; null sequences
correspond to 30 s gaps in data. The modulation index m is equal
to 0.35–0.4, indicating weak scintillation at ν0 = 324 MHz for
PSR B0950+08. The fast fluctuations of m(t) are due to noise or
weak pulses. The slow variations of m(t) are caused by the wide-
bandwidth component of scintillation; the narrow-bandwidth
component of scintillation averages out over the observing band.

Figure 3 shows the mean cross-correlation of the interfero-
metric visibility on the Arecibo–Westerbork baseline after the
visibility is averaged over frequency:

CCF(Δt) = 〈V (f, t)V ∗(f, t + Δt)〉f,t . (46)

The correlation is shown for nonzero temporal lags of Δt =
100k s, where k = 1, 2,. . ., 35. Intrinsic pulsar fluctuations
are uncorrelated at these large lags, so the correlation arises
from scintillation. The characteristic timescale of scintillation,
defined as the lag at half maximum, is tSC ≈ 1000 s. Because
the correlation is averaged over frequency, this reflects the effect
of the broadband variation in Figure 2.

4.2. Estimated Structure Function

We used our observations to estimate the structure function of
the interferometric visibility, and compared this estimate with
the theoretical results of Section 2. To form our estimate, we

7
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from the beginning of the observation. Dashed and solid lines correspond to different times.
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Figure 3. Mean value of the cross correlation after averaging over frequency,
separated by 100k s, where k = 1, 2, 3,. . ., 35, for the Arecibo–Westerbork
baseline.

normalized each spectrum V(f, t) by its mean in frequency, and
also corrected for the receiver bandpass:

F (f, t) = V (f, t)B0

〈V 〉f (t)B(f )
, (47)

where B(f ) is the receiver bandpass and B0 is its value at the
center frequency. As mentioned in Section 2.2 and discussed
further in the Appendix, we used the squared intensity when
the noise level was comparable to the signal (i.e., on the space
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baselines). So we calculated a mean structure function for both
baselines as

F(Δf, Δt) = 〈[F 2(f, t) − F 2(f + Δf, t + Δt)] · [F 2(f, t + Δt1)

− F 2(f + Δf, t + Δt + Δt1)]〉f,t , (48)

where we include an additional shift in time Δt1 = 20 s
for a significant reduction of the effects of noise for the
structure function at zero frequency lag. As we show in the
Appendix, in the weak scintillation, the structure function for
the squared modulus of the visibility is proportional to the
structure function for the modulus of visibility. Consequently,
for our calculated normalized structure function, we can use
all theoretical relations from Section 2. Structure functions
for Arecibo–Westerbork and RadioAstron–Arecibo baselines
normalized by (〈F 2(f, t)〉f,t )2 are plotted with frequency lag
Δf in Figure 4, for different time lags Δt . We calculated the
structure function for both positive and negative frequency
lags, Δf .

4.3. Comparison with Theory

4.3.1. Simple Model

The structure functions shown in the two panels of
Figure 4 have qualitatively different forms. Comparison of
the two shows that the structure function on the shorter
Arecibo–Westerbork baseline comprises a narrow-bandwidth
component and a broader-bandwidth component. For the long
RadioAstron–Arecibo space baseline, the narrow-bandwidth
component is absent; we see only the broad-bandwidth struc-
ture. (The sharp detail at lag Δt = 0 s is caused by noise.)

Figure 5. Scheme of dissection of structure function into effects of near and
far screens. (top) Structure function for distant screen DI,2(Δf ), plotted with
frequency lag Δf . (middle) Structure function for nearby screen DI,1(Δf ).
(bottom) Sum of structure functions for the two screens DI (Δf ), modeling
observations on the Arecibo–Westerbork baseline. Box shows area of Figure 4.

The narrower component also appears only at small time lags,
whereas the broader component appears at both large and small
time lags. The two frequency scales correspond to two effective
layers of turbulent plasma, separated in space, where scattering
of pulsar emission take place.

As a simple model for the structure function, we adopt a
piecewise-linear form, displayed in Figure 5. Formally, we
take α1 = α2 = 1 in Equation (9); this is adequate for the
determination of characteristic scales. This leads to the form

DI,�(r�) =
{

m2 |r�|
ρFr,�

, |r�| < ρFr,�

m2, |r�| � ρFr,�

(49)

where
|r�|
ρFr,�

=
∣∣∣∣ Δρ

ρFr,�
+

Δt

tFr,�
+

θ0Δf

fFr,�

∣∣∣∣ , (50)

where we have combined results of Sections 2.2.7 through 2.2.9.
The index � = 1, 2 runs over the two screens. Note that the
displacements are added vectorially to form the arguments
r�, but the arguments for different screens � are completely
independent.

Although the dependence of the structure function on |r�|
is linear, interplay among the arguments can lead to different
dependences on Δf . For example, if dispersion by the cosmic
prism is perpendicular to the velocity of the ray through the
screen so that β� ≈ π/2, and both frequency and time offsets
contribute with Δf/fFr < 1 and |VΔt |/rFr < 1, then the
variation of DI with f becomes approximately quadratic, as
Equation (26) shows. Likewise, for Δf/fFr < |Δρ|/rFr < 1
and ϕ ≈ π/2, the dependence is approximately quadratic.

9
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On the space–Earth RadioAstron–Arecibo baseline, the long
baseline suppresses most of the narrowband structure and some
of the wideband structure, as Figure 4 (bottom) shows. The
shape of the structure function becomes more quadratic with
increasing Δt . As we argue in more detail below, this suggests
that the interferometer baseline is perpendicular to the velocity
of the ray relative to the more distant screen, screen 2.

The two components of the structure function on the shorter
baseline represent the structure functions from the two screens:

DI,AR−WB ≡ DI = DI,1 + DI,2.

Consequently, for the shorter Arecibo–Westerbork baseline, we
expect the structure function to take the form

DI (Δf ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2m2
1

∣∣∣ Δf

fFr,1

∣∣∣ + 2m2
2

∣∣∣ Δf

fFr,2

∣∣∣ , for |Δf | < fFr,2

2m2
1

∣∣∣ Δf

fFr,1

∣∣∣ + 2m2
2 for fFr,1 > |Δf | > fFr,2

2m2
1 + 2m2

2 for |Δf | > fFr,1.

(51)

The increase of the structure function up to the maximum
frequency difference that is reliably sampled for our 16 MHz
observing bandwidth, Δf0 = 8 MHz, indicates that fFr,1 is
equal to or greater than Δf0. This increase appears for both
long and short baselines. Consequently, the present data do
not allow us to explore the third possibility, |Δf | > fFr,1, in
Equation (51). From inspection of Figure 4 (top), the structure
function on the shorter baseline has a change of slope at the
frequency corresponding to the Fresnel scale for screen 2, at
Δf = fFr,2 = 3.1 MHz (25 channels). This is the transition
from the first possibility to the second in Equation (51).

4.3.2. Evaluation of Model Parameters

From inspection of Figure 4, we observe that DI approxi-
mately doubles between fFr,2 = 3.1 MHz and Δf0 = 8 MHz:

DI (fFr,2) ≈ 0.5DI (Δf0). (52)

If we substitute for DI into this expression from Equation (51),
using second possibility because fFr,1 > Δf0 > fFr,2, we find

2m2
1
fFr,2

fFr,1
+ 2m2

2 ≈ 0.5

(
2m2

1
Δf0

fFr,1
+ 2m2

2

)
. (53)

Note also that the modulation index found for the entire scan,
m = 0.35, as illustrated in Figure 2, is approximately equal to
DI (Δf0), because the bandwidth of the observations limits the
modulation index. Thus,

DI (Δf0) = 2m2
1

Δf0

fFr,1
+ 2m2

2 ≈ 2m2. (54)

From Equations (53) and (54), we find that

m1 =
√

fFr,1

2Δf0 + 2fFr,2
m (55)

m2 =
√

Δf0 − 2fFr,2

2Δf0 − 2fFr,2
m = 0.15. (56)

We can set bounds on m1 from the facts that fFr,1 > Δf0 =
8 MHz, as observed above, and from the fact that Smirnova
& Shishov (2008, see Figure 10) find fFr,1 < 15 MHz at our
observing frequency. We then find

0.32 < m1 < 0.43. (57)

The smaller value corresponds to our lower limit on fFr,1,
and the larger to the upper limit. Consequently, our model
comprises two screens, both weakly scattering. Screen 1 has
the greater modulation index m1, and a larger frequency scale
corresponding to the Fresnel scale fFr,1. This suggests that
screen 1 is closer, as can be seen from Equations (31) and (32).

4.3.3. Scales and Distances

We can use the behavior of the structure function with time, as
well as frequency, to estimate the Fresnel scales and distances of
the scattering screens. The amplitude of the narrower component
of the structure function decreases with increasing time shift,
and falls to zero at time lag Δt = 1000 s. The cross-correlation
coefficient of spectra decreases with time lag and falls to half-
maximum as discussed in Section 4.1 above, and as shown in
Figure 3. This suggests that the typical timescale for the narrow
component, produced by screen 2, is less than 1000 s.

We can evaluate the Fresnel scale for screen 1 by comparing
the structure function at Δf = 0 and Δf = Δf0, at Δt = 1000 s.
At this time lag, the structure function at Δf = 0 is 0.42 times
that at Δf = Δf0 as seen in Figure 4:

DI (Δf = 0, Δt = 103 s) = 0.42DI (Δf = Δf0, Δt = 0). (58)

Using the forms for the structure functions introduced in
Section 4.3.1, and observing that the contribution of DI,2 = 2m2

2
at this large time lag, Equation (58) becomes(

V1 Δt

ρFr,1

)
m2

1 + 2m2
2 = 0.42

[
2

(
Δf0

fFr,1

)
m2

1 + 2m2
2

]
.

(59)

From this we obtain an expression for ρFr,1:

ρFr,1 = m2
1fFr,1V1Δt

0.42 Δf0 m2
1 − (1–0.42)fFr,1m

2
2

. (60)

We eliminate m1 in favor of m and fFr,1 using Equation (55) and
find

ρFr,1 = (1.4 to 2.7) × 105 km, (61)

where in the last line we have used our observational limits for
fFr,1 8 MHz < fFr,1 < 15 MHz, and for V1 used the speed of
the Earth, relative to the Local Standard of Rest, at the date of
observation V1 = Vobs = 41 km s−1. Using Equation (27), we
find for the distance of screen 1, z1,

z1 = k(ρFr,1)2 = (4.4–16.4) pc. (62)

Thus, screen 1 is quite close to the Earth.
Using Equation (31), we obtain for the refractive angle

θ0 = ρFr,1

2z1

ν0

fFr,1
(63)

= (1.1–4.4) mas, (64)
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where the larger value for θ0 arises from the smaller value for
fFr,1, leading to a closer screen (smaller value of z1).

Using this value for the refractive angle and fFr,2 = 3.1 MHz
in the expression for the frequency scale corresponding to
refraction by the nearby screen, Equation (32), we find for the
value of z2,

z2 = (26–170) pc, (65)

where the range of screen distances arises from the range of
possible values for fFr,1, with the closer distance for screen 2
associated with a closer distance for screen 1, and both arising
from the smaller value for fFr,1. Screen 2 is always more distant
and may lie at a significant fraction of the pulsar distance of
260 pc.

The Fresnel scale for screen 2 is given by Equation (29):

ρFr,2 = (3.5 to 15) × 105 km, (66)

where the smaller value corresponds to the lower limit on fFr,1,
and the larger to the upper limit.

We note that our reconstruction of Fresnel scales, screen dis-
tances, and refraction angle is roughly consistent with the ob-
servation that the narrow component of the structure function is
suppressed on the long RadioAstron–Arecibo baseline, as shown
in Figure 4 (bottom). We expect this component to become
decorrelated over a distance of ρFr,1, or 140,000–270,000 km,
whereas the projected baseline length is 220,000 km. Our inter-
ferometer results favor the greater distances in this range from
screen 1.

4.3.4. Asymmetry of the Structure Function

The cosmic prism disperses the scintillation pattern across
the observer plane, so that particular intensity maxima and
minima appear at different positions at different frequencies.
If the screen moves parallel to the direction of dispersion, then
the observer notes a shift in the frequency of the scintillation
pattern with time, as given by V1 and V2 in Equations (13)–(19).
If multiple screens are present, as we argue above, and if they
have different velocities, then the observer will notice different
rates for the different resulting patterns.

The shift in frequency of the scintillation pattern with time or
position leads to an asymmetry in frequency Δf of the structure
function: DI,�(Δf, Δt, Δρ), for nonzero time lag Δt or finite
baseline length Δρ. This asymmetry increases proportionately
with Δt or Δρ. For two screens with different velocities,
displacements of the structure functions DI,1 and DI,2 increase
with different rates. If the screens are moving with velocities
with opposite directions of projection onto θ0, the resulting
displacements have opposite sign.

As an example of this asymmetry, Figure 6 shows the mean
structure functions for the long RadioAstron–Arecibo baseline
at large time lags. The line shows the best-fitting parabola at
Δt = 3000 s. The minimum is shifted by 750 kHz, or six
channels, toward +Δf . As Equation (24) suggests, a minimum
of the structure function lies where

ρf = −ρt , (67)

ρt = V1 cos β1Δt = 1.8 × 109 cm. Using Equations (31), (54),
and (64) we find: z1θ0 = ρf · ν0/(2Δf ). From the previous
expressions using z1 = 4.4 to 16.4 pc we find the refractive
angle is θ0 = 1.4–5.8 mas, which is in reasonable agreement
with the value obtained previously.
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Figure 6. Mean structure function for the RadioAstron–Arecibo baseline for
time lags 2000 s and 3000 s. A parabola was fitted to the structure function
for time lag 3000 s (line). The minimum of the fitted parabola is marked by an
arrow.

We can estimate directions of refractive dispersion and screen
velocity from the measured asymmetry of the structure function.
For our observations on the short Arecibo–Westerbork baseline,
the weak asymmetry of the structure function, along with
a relatively rapid decorrelation of the narrow component at
Δt = 1000 s as seen in Figure 4 (top), suggests that the angle
β1 between the vectors θ0 and Vobs is close to π/2.

We quantify the asymmetry of the normalized difference of
structure functions for positive and negative frequency lags by
the ratio

D(Δf, Δt) = DI (Δf, Δt) − DI (−Δf, Δt)

DI (Δf, Δt) + DI (−Δf, Δt)
. (68)

For particular values of Δt , the extrema as a function of Δf lie at

∂ΔfD(Δf, Δt) = 0. (69)

For weak-scattering models, such as the simple model discussed
in Section 4.3.1, where the structure function for each screen
has a single minimum and becomes constant for large displace-
ments, extrema of D tend to lie near or at the minima of the
structure functions of the individual screens.

We display the ratio D(Δf, Δt) for our observations in
Figure 7, at a time lag of Δt = 1000 s, for both
RadioAstron–Arecibo and Arecibo–Westerbork baselines. For
both, the asymmetry is relatively mild: |D| � 1.

For the Arecibo–Westerbork baseline, we have two extrema
on the curve along the positive x-axis Δf > 0. A minimum lies
at large values Δf1 ≈ 3 MHz, and a maximum lies at a small
values of Δf2 ≈ 1 MHz. The presence of both a maximum
and a minimum suggests that the transverse velocities of the
two screens have opposite projections onto the direction of
dispersion, so that they migrate toward opposite directions in
frequency with increasing time. For this relatively short baseline,
ΔρAW ≈ 0, as Figure 8 suggests.

On the long RadioAstron–Arecibo baseline, we see only a
single minimum at a position close to Δf1. Under the assumption
that the short baseline is sensitive to both broadband scintillation
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Figure 7. Ratio of structure functions difference for positive and negative
frequency lags on its sum in dependence of frequency lag: for baseline (top)
RadioAstron–Arecibo and for (bottom) Arecibo–Westerbork. The time lag is
1000 s.

(from the nearby screen 1) and narrowband scintillation (from
the distant screen 2), whereas the long baseline is sensitive to
only the broadband contribution, we suggest that the minimum
at larger frequency difference Δf1 is associated with screen 1,
and the maximum at small difference Δf2 with screen 2.

4.3.5. Directions of Ray Motion Relative to Screens

By evaluating Equation (68) for the geometry and simple form
of the structure function discussed above, for ρFr,2/V2 < Δt <
ρFr,1/V1 as in Figure 7, we can evaluate the asymmetry function
for the short Arecibo–Westerbork baseline |ΔρAW| < ρFr,2. We

find that the asymmetry function reaches a maximum value of

D(Δf, Δt) ≈
(

m2

m1

)2 (
ρFr,1

ρFr,2

)
cos β2 (70)

≈ 0.05–0.1 cos β2.

As the lower panel of Figure 7 indicates, the observed value of
D at the maximum at Δf2 is

D(Δf2, Δt = 103 s) ≈ 0.05. (71)

Combining Equations (70) and (71) and evaluating the expres-
sion for our limits on ΔfFr,1 yields the angle

0◦ � β2 � 60◦. (72)

This is the angle between vectors θ0 and V2.
Similarly, for our model, the minimum of the asymmetry

function has the value

D(Δf, Δt) ≈ cos β1. (73)

In this case, as the lower panel of Figure 7 indicates,

D(Δf1, Δt = 103 s) ≈ − 0.15 (74)

β1 ≈ 100◦. (75)

The angle β1 is the angle between vectors θ0 and V1.
For the space–Earth baseline with length |ΔρRA| =

220, 000 km, the value of the asymmetry function at its mini-
mum is given by the relation

D(Δf, Δt) ≈ (VobsΔt/Δρ) cos β1 ≈ 0.2 cos β1. (76)

The upper panel of Figure 7 indicates

D(Δf1, Δt = 103 s) ≈ −0.04. (77)

The resulting estimated value cos β1 ≈ −0.2 is in approximate
agreement with that obtained from the short baseline.

Figure 8 summarizes the velocities and the refractive angle
that we obtain, and compares them with the baseline vectors
for our time lag of Δt = 103 s and the pulsar velocity. The

Figure 8. Vectors on the sky showing velocity of the pulsar VPSR, direction of gradient of refracting wedge θ0, velocity of the Earth at this epoch, Vobs = V1, velocity
of ray relative to screen 2, V2, and interferometer baselines ΔρRA, ΔρAW expressed in velocity units: Δρ/103 s. Length of θ0 is arbitrary. The left figure shows all
vectors and the right figure is enlarged five times.
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Figure 9. Mean coherence function: for the (top) Arecibo–Westerbork, and
(bottom) RadioAstron–Arecibo baselines. The y axis is amplitude plotted on a
log scale.

difference of the angles β1 and β2 indicates the presence of two
spatially separated scattering screens. We assume that V2 is set
by the velocities of the observer Vobs and of the pulsar VPSR;
and set the distance of the screen to z2 = 0.5z. This leads to
β2 = 55◦. For screen distances of up to 170 pc, the leveraged
pulsar velocity can increase the declination component of V2 to
as much as 70 km s−1. The baseline vectors are displayed as
velocities, with the length of the baseline divided by 103 s.

4.4. Coherence Function

We calculated the mean modulus of the CF by averaging the
inverse Fourier transforms of the complex spectra over the full
observation. While the structure function gives us statistically
reliable information about the small-scale frequency structure
caused by the far layer of scattering plasma, the CF provides
detailed information about the nearby layer. The time delay τ in
μs corresponds to 1/Δf , where Δf is a frequency shift in spectra
expressed in MHz. The limiting resolution in the time delay is
determined by the recorded bandwidth and is 0.0625 μs for our
data. The mean CFs for (top) Arecibo–Westerbork and (bottom)
RadioAstron–Arecibo are shown in Figure 9. Note that for a few
individual pulses, the phase of maximal CF differs from the rest
of the pulses. This discrepancy may reflect problems with the
correlator, so we only averaged the CFs for pulses with the same
maximum positions.

The CF has two components: a narrow, unresolved one
corresponding to unscattered emission and a wide, symmetric
component corresponding to scattered emission, which takes the
form 〈|PI (τ )|〉 ∼ τ−(α+1)/2 for a power-law phase spectrum (see
Equations (43) and (44)). Variations over small lags τ reflect the
influence of the nearby layer while variations over larger lags
correspond to effects from the far layer. The symmetric structure
of scattered component indicates strong angular refraction and
demonstrates that the scattering angle is less than the refractive
angle.

Figure 10 shows the temporal CF after normalization by
the maximum value. The effects of noise were estimated via
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Figure 10. Leading part of the coherence function presented in Figure 9 shown
on a log–log scale. The noise level has been subtracted. Straight lines correspond
to a power-law fit using points not contaminated by noise.

a mean of the last 20 points and were then subtracted at
quadrature. The lines represent the best fitting power laws
for points not corrupted by noise; the fit indices were n1 =
1.00 ± 0.04 for Arecibo–Westerbork and n2 = 0.93 ± 0.05 for
RadioAstron–Arecibo. Hence, the power spectra of the electron
density fluctuations are similar for the two layers, with an index
of γ = 3.00 ± 0.08 (see Equations (9), (43) and (44)). This
value is in good agreement with that of γ = 3.00±0.05 obtained
by Smirnova & Shishov (2008) from analysis of scintillations
at 40 to 112 MHz.

5. CONCLUSIONS

We carried out successful RadioAstron space–ground VLBI
observations of PSR B0950+08 on 25 January 2012, at 92 cm
with a spacecraft distance of 330,000 km and projected inter-
ferometer baseline of 220,000 km. These measurements rep-
resent the highest angular resolution ever achieved in meter
wavelength observations. The qualitative difference of the form
of the structure function between long and short baselines, as
shown in Figure 4 and discussed in Section 4.3, suggests the
presence of two scattering plasma layers along the line of sight
to the pulsar. From analysis of the time and frequency scales of
the scintillation, we find that these are located at distances of
4.4–16.4 pc,and of 26–170 pc, respectively, as discussed in Sec-
tion 4.3.3. The nearby layer dominates the temporal structure of
the scintillation, while both the nearby and far layers influence
the frequency structure of the scintillation. The velocity of the
line of sight in the far and nearby layers, projected onto the
direction of refraction by the “cosmic prism” are 20 km s−1 and
−8 km s−1 correspondingly. After correction for the velocities
of the Earth and the pulsar, these are in accord with the veloci-
ties typical for interstellar clouds. The cosmic prism is described
below and in Sections 2.2.4, 2.2.5, 4.3.3, and 4.3.4.

The distance to the far screen suggests that it may be located
at the outer wall of the Local Bubble, which lies at about that
distance in the direction of PSR B0950+08 (Snowden et al.
1990; Lallement et al. 2003). The distance of the nearby screen
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suggests that it lies at the ionized surface of a nearby molecular
cloud; indeed, such a screen is seen in the direction of the pulsar
(Linsky et al. 2008).

From analysis of the temporal CF on short and long baselines,
introduced theoretically in Section 2.3 and computed for our
observations in Section 4.4, we studied the spectrum of density
fluctuations in the two scattering layers. The spectra of density
fluctuations for the two layers were found to follow power laws,
with indices γ1 = γ2 = 3.00 ± 0.08. These indices differ from
the Kolmogorov value of γ = 11/3. Note that the Kolmogorov
spectrum describes more distant scattering media very well.
However, our results suggest that nearby material has a flatter
spectrum.

We observe evidence for refraction by an interstellar plasma
wedge, or “cosmic prism.” This refraction results in the ob-
served moderate modulation by scintillation of m = ΔI/I < 1,
in combination with narrow fractional scintillation bandwidth
Δν/ν0 < 1. Usually m < 1 is characteristic of weak scintilla-
tion, whereas Δν/ν0 < 1 is characteristic of strong scintillation.
However, if the characteristic value of the refraction angle θ0
by the cosmic prism is greater than the characteristic value of
the diffractive or scattering angle, θ0 � Θscat, then the fre-
quency structure of the scintillation is formed by the frequency
dependence of the displacement of the beam path, and these two
conditions appear together. We describe this theoretical picture
in Sections 2.2.4 and 2.2.5, and compute parameters of the in-
ferred prism from our observations in Sections 4.3.3 and 4.3.4.
For PSR B0950+08, we evaluated the angle of refraction as
θ0 = (1.1–4.4) mas. The refraction is in a direction nearly per-
pendicular to the velocity of observer.
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APPENDIX

For a signal measured in the presence of significant noise, it
is advantageous to measure fluctuations in the squared modulus

of the cross-power spectrum, the response of the interferometer.
We can write the cross-power spectrum as

F (ρ, ρ + Δρ, f, t) = V (ρ, ρ + Δρ, f, t) + N (ρ, ρ + Δρ, f, t).

(A1)

Here, N represents additive white noise from backgrounds.
Then, to statistically analyze the fluctuations caused by inter-
stellar scintillation, we form the function

F(ρ, ρ + Δρ, f, t)

= F (ρ, ρ + Δρ, f, t)F ∗(ρ, ρ + Δρ, f, t + δt1)

= V (ρ, ρ + Δρ, f, t)V ∗(ρ, ρ + Δρ, f, t + δt1) + δN, (A2)

where δt1 is a small shift in time and δN is given by

δN = N (ρ, ρ + Δρ, f, t)N∗(ρ, ρ + Δρ, f, t + δt1)

+ V (ρ, ρ + Δρ, f, t)N∗(ρ, ρ + Δρ, f, t + δt1)

+ V ∗(ρ, ρ + Δρ, f, t + δt1)N (ρ, ρ + Δρ, f, t). (A3)

In the case of weak scintillation, Equation (A2) reduces to

F(ρ, ρ + Δρ, f, t) ≈ H (t)H (t + δt1)

× [1 + j (ρ, ρ, f, t) + j (ρ + Δρ, ρ + Δρ, f, t)] + δN . (A4)

The introduction of δt1 decorrelates noise without significant
influence on j, or V. The structure function for F(ρ, ρ +Δρ, f, t)
fluctuations can then be written as

DΔF (Δρ, f, t) ≈ 2H 2DΔ|V |(Δρ, f, t). (A5)
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