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Abstract

The Crab pulsar has striking radio emission properties, with the two dominant pulse components—the main pulse
and the interpulse—consisting entirely of giant pulses. The emission is scattered in both the Crab Nebula and the
interstellar medium, causing multipath propagation and thus scintillation. We study the scintillation of the Crab’s
giant pulses using phased Westerbork Synthesis Radio Telescope data at 1668MHz. We find that giant pulse
spectra correlate at only ∼2%, much lower than the one-third correlation expected from a randomized signal
imparted with the same impulse response function. In addition, we find that the main pulse and the interpulse
appear to scintillate differently; the 2D cross-correlation of scintillation between the interpulse and main pulse has a
lower amplitude and is wider in time and frequency delay than the 2D autocorrelation of the main pulses. These
lines of evidence suggest that the giant pulse emission regions are extended, and that the main pulse and interpulse
arise in physically distinct regions that are resolved by the scattering screen. Assuming the scattering takes place in
the nebular filaments, the emission regions are of order a light-cylinder radius, as projected on the sky. With further
very long baseline interferometry and multifrequency data, it may be possible to measure the distance to the
scattering screens, the size of giant pulse emission regions, and the physical separation between the pulse
components.

Unified Astronomy Thesaurus concepts: Radio pulsars (1353); Interstellar scintillation (855)

1. The Unusual Properties of the Crab Pulsar

The Crab pulsar is one of the most unusual radio pulsars and
has been the subject of much observational and theoretical
research (for a review, see Eilek & Hankins 2016). The two
dominant components to its radio pulse profile, the main pulse
and the low-frequency interpulse (simply referred to as the
interpulse for the remainder of this paper), appear to be
comprised entirely of randomly occurring giant pulses—
extremely short and bright pulses of radio emission showing
structure down to ns timescales and reaching intensities over a
MJy (Hankins & Eilek 2007). Only the fainter components of
the pulse profile—such as the precursor (to the main pulse)—are
similar to what is seen for regular radio pulsars.

The main pulse and interpulse are aligned within 2 ms with
emission components at higher energy, from optical to γ-ray
(Moffett & Hankins 1996; Abdo et al. 2010), and giant pulses
are associated with enhanced optical (Shearer et al. 2003; Strader
et al. 2013) and X-ray (Enoto et al. 2021) emission. Because pair
production strongly absorbs γ-ray photons inside the magneto-
sphere, this suggests that all these components arise far from the
neutron star surface, with possible emission regions being the
various magnetospheric “gaps” (Romani & Yadigaroglu 1995;
Istomin 2004; Muslimov & Harding 2004; Qiao et al. 2004),
induced Compton scattering in the upper magnetosphere
(Petrova 2004, 2009), or regions outside the light cylinder
(Philippov et al. 2019). In these regions, the giant pulses are
thought to arise stochastically, likely triggered by plasma
instabilities and/or reconnection (Eilek & Hankins 2016;

Philippov et al. 2019), from parts smaller, of order Γcτpulse;
0.1K1 km (with τpulse∼ 10 ns the timescale of a pulse, and
Γ∼ 100 an estimate of the relativistic motion), than the overall
size of the emission region, of order cPδfpulse∼ 100 km (with
δfpulse∼ 0.01 the width of the pulse phase window in which
giant pulses occur).
While similar in their overall properties, the main pulse and

interpulse have differences in detail. In particular, the interpulse
has a large scatter in its dispersion measure compared to the
main pulse, possibly suggesting that it is observed through a
larger fraction of the magnetosphere (Eilek & Hankins 2016).
In addition, it appears shifted in phase and shows “banding” in
its power spectra above 4 GHz (the so-called “high-frequency
interpulse”), with the spacing proportional to frequency
(Hankins & Eilek 2007; Hankins et al. 2016).
The Crab pulsar, like many pulsars, exhibits scintillation from

multipath propagation of its radio emission. The scattering
appears to include both a relatively steady component, arising in
the interstellar medium, and a highly variable one, originating in
the Crab Nebula itself, with the former responsible for the
angular and the latter for (most of) the temporal broadening
(Rankin & Counselman 1973; Vandenberg 1976; Popov et al.
2017; Rudnistkii et al. 2017; McKee et al. 2018).
This scintillation offers the prospect of “interstellar inter-

ferometry,” where the high spatial resolution arising from
multiple imaging is used to resolve the pulsar magnetosphere.
This has been applied to some pulsars, with separations
between emission regions inferred from time offsets (or phase
gradients) between the scintillation patterns seen in different
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pulse components. For some of these pulsars, the inferred
separations were substantially larger than the neutron star
radius: ∼103 km for PSR B1237+25 (Wolszczan & Cordes
1987), 100 km for PSR B1133+16 (Gupta et al. 1999), and
of order the light-cylinder radius (several 104 km) in a further
four pulsars (Smirnova et al. 1996). In contrast, for PSR B0834
+06, Pen et al. (2014) find only a very small positional shift,
constraining the separation between emission regions to
∼20 km, comparable to the neutron star radius.

In the above studies, the scintillation pattern offsets are small
compared to the scintillation scale, i.e., the scintillation screen
does not resolve the pulsar magnetosphere, but changes in
position can be measured with data that have a high signal-to-
noise ratio (S/N). For the Crab pulsar, however, the proximity
of the nebular scattering screen to the pulsar implies that, as
seen from the pulsar, the screen extends a much larger angle
than would be the case if it were far away (for a given
scattering time). Therefore the scintillation pattern is sensitive
to small spatial scales, of order ∼2000 km at our observing
frequency (see Section 4.2), comparable to the light-cylinder
radius rLC≡ cP/2π; 1600 km.

The high spatial resolving power also implies that for a given
relative velocity between the pulsar and the screen, the
scintillation timescale is short. Indeed, from the scintillation
properties of giant pulses, Cordes et al. (2004) infer a
decorrelation time of ∼25 s at 1.4 GHz. Unfortunately, their
sample, while very large, had insufficient interpulse-main pulse
pairs to look for differences between the two components
(J. Cordes 2017, personal communication). From an even
larger sample, Karuppusamy et al. (2010) identified pairs of
pulses that either occurred in the same main-pulse phase
window, or with one in the main pulse and one in the interpulse
window. They did not find major differences between the sets.
Like for the close pairs in Cordes et al. (2004), they found
correlation coefficients consistent with the one-third expected
for pulses that differ in their intrinsic time and frequency
structure, but which have additional frequency structure
imposed by scintillation.

In this paper, we compare the scintillation structure of the
main pulse and the interpulse in more detail. We find that in our
sample the frequency spectra of close pulses are much more
weakly correlated than was seen previously, suggesting that
during our observations, the scintillation pattern is sensitive to
smaller spatial scales at the source than the separation between
bursts (in effect, the scattering screen resolved the emission
region). The scintillation patterns of the main pulse and
interpulse also appear to differ, which, if taken at face value,
suggests that their emission locations are offset in projection by
of order a light-cylinder radius.

2. Observations and Data Reduction

We analyze 6 hr of data form the phased Westerbork
Synthesis Radio Telescope (WSRT), and 2.5 hr of simulta-
neous data from the 305 m William E. Gordon Telescope at
the Arecibo observatory (AR) that were taken as part of a
RadioAstron observing run on 2015 January 10–11 (Popov
et al. 2017). The data cover the frequency range of
1652–1684MHz and consist of both circular polarizations in
two contiguous 16MHz channels, recorded using standard 2 bit
Mark 5B format (WSRT), and VDIF (AR). The use of a
telescope with high spatial resolution is particularly beneficial
in studies of the Crab pulsar as it helps to resolve out the Crab

Nebula, effectively reducing the system temperature from
830 Jy (for the integrated flux at 1.7 GHz) to 165 Jy and 275 Jy
for WSRT and AR, respectively (Popov et al. 2017).
To search for giant pulses, we coherently dedispersed9 the

data from the two channels to a common reference frequency.
Each 1 s segment of data was bandpass calibrated by
channelizing the timestream into 8192 frequency channels
per subband, normalizing by the square root of the time-
averaged power spectrum. This correction works sufficiently
well everywhere but at the band edges. RFI spikes above 5σ are
removed using a 128-channel median filter, and time-variability
is normalized by the square root of the frequency-averaged
power spectrum. The signal was converted into complex by
removing negative frequency components of the analytic
representation signal (via a Hilbert transform) and shifting
the signal down in frequency by half the signal bandwidth.
After forming power spectra, we replace the outer 1 MHz
(1652–1653MHz, 1683–1684MHz) and central 0.5 MHz
(1667.75–1668.25 MHz) with the mean intensity in that time
segment.
We search for giant pulses in a rolling boxcar window of

8 μs in steps of 62.5 ns (one sample in the complex
timestream), summing the power from both channels and both
polarizations. We flagged peaks above 8σ in the WSRT data,
corresponding to ∼60 Jy, as giant pulses, finding 15,232
events, i.e., a rate of∼ 0.7 s−1. This detection threshold was
chosen to ensure there were no spurious detections. We find
4633 pulses above 8σ in the overlapping 2.5 hr of AR data, and
all pulses have a detectable, higher S/N counterpart in WSRT.
We show a sample main pulse that was detected at both
telescopes, as well as the main pulse and interpulse nearby in
time in Figure 1.
One possible concern is the effects of saturation from 2 bit

recording, as described in Jenet & Anderson (1998). The
dispersion sweep in our frequency range of 1652–1684MHz is
3.26 ms, ∼100,000 samples. Thus, even the strongest giant
pulse with a peak flux density of ∼100 kJy and duration of 3 μs
will be reduced in intensity by roughly a thousand times,
increasing the system temperature dS/S by only 35% and 60%
for AR and WSRT, respectively, with the recording systems far
from saturation. The majority of our pulses are much fainter,
near our detection threshold of ∼60 Jy, where saturation effects
will be negligible.

3. Scintillation Properties

With the phased WSRT array, our pulse detection rate is
sufficiently high that it becomes possible to compute a
traditional dynamic spectrum by summing intensities as a
function of time. We do this first below, as it gives an
immediate qualitative view of the scintillation. A more natural
choice for pulses that occur randomly in time, however, is to
parameterize variations as a function of Δt, the time separation
between pulses (Cordes et al. 2004; Popov et al. 2017). Hence,
we continue by constructing correlation functions of the spectra
as functions of both time and frequency offset.

9 Using a dispersion measure of 56.7716 pc cm−3 appropriate for our date
(taken from http://www.jb.man.ac.uk/~pulsar/crab.html; Lyne et al. 1993).
We read in overlapping blocks of data, removed edges corrupted by
dedispersion, such that the dedispersed data were contiguous in time.
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3.1. The Dynamic Spectrum of the Main Pulse

We construct the dynamic spectrum I(t, ν) by simply
summing giant pulse spectra in each time bin. Because we wish
to observe the scintillation pattern rather than the vast intrinsic
intensity variations between giant pulses, we normalize each
time bin by the total flux within that bin. While there will still
be structure in the dynamic spectrum owing to the intrinsic time
structure of the giant pulses (Cordes et al. 2004), any features
in frequency that are correlated in time should only be
associated with scintillation. We show a 20-minute segment of
the dynamic spectrum in Figure 2. While noisy, the dynamic
spectrum shows scintillation features. They are resolved by our
time and frequency bin sizes of 4 s and 250 kHz, respectively,
but only by a few bins, suggesting that the scintillation
timescale and bandwidth are larger than our bin sizes by a
factor of a few (consistent with νdecorr= 1.10± 0.02 MHz,
tscint= 9.2± 0.13 s measured below).

3.2. Correlation Functions

To infer the scintillation bandwidth and timescale, one
usually uses the autocorrelation of the dynamic spectrum, but
for pulses that are randomly spaced in time, it is easier to
correlate spectra of pulse pairs and then bin by time separation
Δt to create an estimate of the intrinsic correlation coefficient ρ
(Δν, Δt) (Cordes et al. 2004).

For two spectra P1(ν) and P2(ν), the expected correlation
coefficient is given by

r n
n m n n m

s s
D =

á - + D - ñP P
, 112

1 1 2 2

1 2
( )

( ( ) )( ( ) )
( )

where Δν is the offset in frequency, μ1, μ2, s1
2 and s2

2 are
expectation values for the means and intrinsic variances of P1

and P2, and we use 〈...〉 to indicate the expectation value of the
product. If the giant pulses were effectively delta functions in
our band, but affected by the same impulse response function
associated with the scintillation, one would expect ρ= 1 for
Δν= 0, and a fall-off in frequency and time difference with the
appropriate scintillation bandwidth and timescale, approaching
0 at large Δν and Δt12. As noted by Cordes et al. (2004),
however, if each pulse consists of multiple shots, the spectra of
two pulses will have a different structure, and if they are still
affected by the same impulse response function, one expects a
reduced peak, with maximum ρ; 1/3 (as was indeed observed
in their data set).
From observed spectra, one can only estimate the correlation

coefficient. As we show in the Appendix, if one simply uses the
standard equation for the sample correlation coefficient, using
the sample mean m and sample variance s2 as estimates of μ
and σ2, the result is biased in the presence of background noise,

Figure 1. Top: Pulse profiles (left) and spectra (right) of a main pulse at both WSRT and AR. A nearby main pulse (middle) and interpulse (bottom) are shown for
comparison, both separated by less than the scintillation timescale measured in Section 3.2. The profiles are shown in 125 ns bins, and the total flux is calculated using
the Tsys values in Section 2. The spectra contain the emission from 0–8 μs in 125 kHz channels. The same pulse at WSRT and AR clearly shows a similar temporal
and spectral structure, while the spectra of pulses within a scintillation time are drastically different, beyond what can be explained through the variable intrinsic
structure in the pulse (discussed in detail in Section 4.1).
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but an unbiased estimate can be made using
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where mb is the mean power in the background.
We create spectra for pulses using the 8 μs bin centered at

each peak, yielding 125 kHz channels. To ensure sufficiently
reliable correlations between pulse pairs, we limited ourselves
for the WSRT data to pulses with S/N> 16, corresponding to
S/N> 1 per channel, leaving 6755 main pulses and 650
interpulses. We use the AR data as a cross-check for possible
systematics in the WSRT data, lowering the limit to SN> 10 to
have roughly the same sample of pulses, accounting for the
ratio of 165/275 between the temperatures of the two telescope
systems.

For each pulse pair, the correlation between their spectra
gives r(Δν) for a single value of Δt, the time separation of the
pulses. We average these correlated spectra in equally spaced
bins of Δt to construct our estimate of the correlation function.
We show the result in Figure 3 for correlations between main-
pulse pairs and for correlations between main-pulse and
interpulse pairs (there are insufficient giant pulses associated
with the interpulse to calculate a meaningful correlation
function from those alone).

One sees that the correlations are fairly well defined and that
the correlation of the main pulse with itself is clearly different
from that with the interpulse, the latter being broader in both
frequency and time, and having lower maximum correlation.
More generally, one sees that the amplitudes of all correlations

are surprisingly low. We investigate the latter further in
Section 4.1 but note here that it is not some systematic product
of a given telescope: the results for WSRT and AR are entirely
consistent with each other (as expected, as the giant pulses at
both telescopes should differ only by noise and by systematics;
space-ground VLBI results from Rudnistkii et al. (2017)
measure a spatial scale of the scintillation pattern of
34,000± 9000 km during this observation, which is larger
than the Earth’s radius).
For more quantitative measures, we fit the correlations with

2D Gaussians with variable amplitude, frequency, and time
width. For the correlation between main pulse and interpulse,
we additionally allow for offsets in time and frequency Δt0 and
Δν0, where the sign convention used is IP–MP (e.g., a positive
Δt0 means the MP precedes the IP). For the main-pulse
correlations, we find an amplitude of 1.80± 0.03% and
decorrelation scales of νdecorr= 1.10± 0.02 MHz in fre-
quency, and tscint= 9.24± 0.13 s in time.10 The timescale is
somewhat shorter than the value of 25± 5 s found at 1.475
GHz by Cordes et al. (2004), and the difference in observing
frequency does not account for the difference (for tscint∝ ν, our
measurement corresponds to 8.17± 0.12 s at 1.475 GHz).
Differences are expected for observations at different epochs,
however, as the scattering in the nebula is highly variable
(Rankin & Counselman 1973; Lyne & Thorne 1975; Isaacman
& Rankin 1977; Rudnistkii et al. 2017, and often showing
“echoes,” e.g., Backer et al. 2000; Lyne et al. 2001; Driessen
et al. 2019).
Our fits to the main-pulse to interpulse correlations confirm

the qualitative impression from Figure 3 that compared to the
main-pulse to main-pulse correlations, they are weaker and

Figure 2. Top: Part of the dynamic spectrum inferred from the main pulse by summing individual giant pulse spectra at 250 kHz resolution in 4 s bins. The total flux
in each time bin was normalized to remove the effects of variable pulse brightness. The random occurrence of giant pulses and their variable flux means that the noise
properties of the time bins are heterogeneous and that some bins have no flux. Bottom: Dynamic spectrum of an off-pulse region before each giant pulse, processed in
the same way as in the top panel. Artifacts from the bandpass are apparent at 1668 MHz, and at the band edges, which are masked in further analysis. The off-pulse
region shows heterogeneous noise due to the variable number of “pulses” in each time bin, reflecting the uneven sampling of giant pulses. The color bars are saturated
to m s

s
-
+

1
2 , where μ and σ are the mean and standard deviation of the on-pulse dynamic spectrum.

10 We adopt the usual convention, defining νdecorr and tscint as the values where
the correlation function drops to 1/2 and 1/e, respectively.
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broader in both frequency and time: the measured amplitude
is 0.97± 0.07%, tscint= 10.7± 0.8 s, and νdecorr= 1.44±
0.10MHz. We also find marginally significant time and
frequency offsets of Δt0= 1.02± 0.54 s and Δν0=− 0.34±
0.09MHz.

To try to quantify the significance of these differences, we
use simulated cross-correlations. Because we have many more
giant pulses during the main pulse than the interpulse, we
simply take 650 random main pulses (the number of interpulses
above 16σ) for the cross-correlations and correlate them with
the other 6755 main pulses, without correlating identical
pulses. We repeat this 10,000 times and fit each subset with a
2D Gaussian, allowing for offsets in time and frequency Δt0
and Δν0. Comparing these with the value fit to the interpulse to
main-pulse correlations (see Figure 4), the differences appear
significant: none of the simulated data sets have as small an
amplitude, or larger frequency offset Δν0, while only relatively

small numbers have a larger time offset Δt0 or wider frequency
or time widths.

3.3. Comparison to Previous Work on the Same Data Set

The same data analyzed in this paper were studied in
Rudnistkii et al. (2017) and Popov et al. (2017), who derive a
decorrelation bandwidth of 279.2± 34.4 kHz, and 320 kHz,
respectively. These values differ significantly from our value of
νdecorr= 1.10± 0.02 MHz, so here we further investigate the
origin of these differences.
Our methods differ from those of Rudnistkii et al. (2017) and

Popov et al. (2017); the crucial difference being that they
autocorrelate individual giant pulses (between left and right
circular polarization to reduce intrinsic structure correlating),
while we correlate pulse pairs. For a direct comparison, we try
to follow the steps of Popov et al. (2017), adopting their cutoff
of SN> 22, correlating left and right circular polarizations of

Figure 3. Left: Images: Cross-correlations r(Δt, Δν) of pulse dynamic spectra between giant pulses in the main pulse with themselves (top) and with giant pulses in
the interpulse (bottom). The correlation between main-pulse giant pulses is symmetric around the origin by construction (i.e., r(Δt, Δν) = r( − Δt, − Δν)), but this is
not the case for the correlation between interpulse and main pulse. Side panels: a 10 bin (−5–5 s) and 9 bin (−0.5–0.5 MHz) wide average of correlations through the
best-fit Δt, Δν, respectively. The dotted blue lines are the same cuts through the 2D Gaussian fits. Right: same as left, but using pulses at AR. The S/N is much lower
owing to the higher Tsys value at AR (leading to fewer detected pulses, with lower S/N), and the shorter observation time. The dotted red line is the overlay of the MP–
MP correlation at WSRT, showing that the two telescopes give consistent results.
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each giant pulse and fitting a single exponential. From this, we
measure νdecorr= 0.39MHz, much closer to their value of
νdecorr= 0.32MHz. However, we find that a two-exponential fit
is a much better fit to the data, giving two distinct scales of
νdecorr, 1= 1.0 MHz and νdecorr, 2= 0.19MHz. This is con-
sistent with our results if the small bandwidth νdecorr is caused
by intrinsic pulse structure (correlating only within the
spectrum of a single pulse), and the wide bandwidth νdecorr is
the scintillation bandwidth (correlating between pulse pairs
within tscint).

Additionally, Rudnistkii et al. (2017) derive a scintillation
timescale of 22.4± 6.1, which is larger than our value by a factor
of 2. Their timescale is derived in a different way, where they use
their measured scintillation bandwidth (described above), and
angular size θ of the scattering screen, derived directly from their
very long baseline interferometry (VLBI) correlation. Using the

known velocity of the Crab and an assumed isotropic scattering
screen, we obtain a timescale estimate. Given the difference in our
methods and the fact that the angular broadening likely arises in
the interstellar medium rather than the nebula, the differences in
these values are negligible.

3.4. Secondary Spectra

Pulsar scintillation is often best studied in terms of its
conjugate variables τ and fD, through their secondary spectrum

t t t=A f I f I f, , ,D D D1 2
*( ) ˜ ( ) ˜ ( ) (e.g., Stinebring et al. 2001;

Brisken et al. 2010). The secondary spectrum is simply the
Fourier transform of the correlation function r(Δν, Δt)= I1(ν,
t)# I2(ν, t). For the MP–MP correlation, A(τ, fD) is purely real,
but in the MP–IP correlation, any time or frequency offsets in
the correlation function will manifest as phase gradients in fD or

Figure 4. Bottom left: Corner plot of the best-fit parameters of the simulated interpulse to main-pulse correlation function obtained by fitting a two-dimensional
Gaussian. Simulated correlation functions are constructed from randomly drawn sets of giant pulses from the main pulse (with the same sample size as that available
for the interpulse), correlated with the full main-pulse sample. The dotted lines and the blue crosses show the best fit to the actual MP–IP correlation. Top right: The
MP–IP correlation and three example simulated MP–IP plots for comparison.
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τ, respectively. We show the secondary spectra for both
correlations after padding by 60 zero bins in time in Figure 5.

The MP–IP secondary spectrum is dominated by a phase
gradient in τ, arising from the frequency offset in the correlation
function. Removing a linear phase gradient in τ shows a
marginally significant phase gradient in fD. If the screen were 1D
and the main pulse and interpulse emission locations were offset,
there would be a phase gradient in fD, independent of τ.

4. Ramifications

4.1. The Surprisingly Low Correlation Coefficient

Giant pulses are on average a few μs in duration and are
comprised of many smaller, unresolved “nanoshots” (e.g.,
Hankins & Eilek 2007). However, if all nanoshots originate
from the same projected physical location, they should all be
imparted with the same impulse response function; an identical
signal would correlate perfectly, and a signal with many
random polarized shots with the same impulse response should
correlate no worse than one-third (Cordes et al. 2004,
Appendix).

The observed ∼2% correlation between main pulses is well
below the expectation of one-third. This could be explained if
individual pulses come from small parts of the full extended
emission region, which is larger than the resolution of the
scattering screen (discussed in the following section). Follow-
ing this explanation, the correlation should decrease even
further during times of higher nebular scattering—we investi-
gate this further in R. Lin et al. (2021, in preparation).

4.2. Spatial Resolution of the Scattering Screen

The size and location of the scattering screen is not precisely
known, but a model in which the majority of the temporal
scattering occurs in the Crab Nebula is favored by VLBI
measurements showing that the visibility amplitude is constant
through the scattering tail, and independent of the scattering
time (Vandenberg et al. 1976; Vandenberg 1976) as well as by
the short scintillation timescale (Cordes et al. 2004).

Because scattering requires relatively large differences in
(electron) density, it is very unlikely to occur inside the pulsar-
wind filled interior of the Crab Nebula, which must have very
low density. For a reasonable bulk magnetic field of 10−4 G,

the emitting radio electrons are very relativistic, with γ∼ 103.
The radio-emitting electrons have a density of ne≈ 10−5 cm−3

(Shklovsky 1957), implying that the refractive index deviates
from unity by a tiny amount,

n
n

D » ~ -n 10 , 3
p

2
18⎛

⎝
⎞
⎠

( )

where n pg= e n mp e e
2 1 2( ) is the plasma frequency, and ν is

the observed radio frequency.
Instead, the only plausible location for the temporal

scattering is in the optically emitting filaments in the Crab
Nebula, which have ne∼ 1000 cm−3 (Osterbrock 1957). These
filaments develop because as the pulsar wind pushes on the
shell material, the contact discontinuity accelerates, leading to
the RT instability (Chevalier 1977; Porth et al. 2014).
With 3D models fit to optical spectroscopic data of the Crab

Nebula, Lawrence et al. (1995) find that the filaments reside
conservatively in the range ∼0.5–2.0 pc when a nominal pulsar
distance of 2 kpc is used.
The scattering causes a geometric time delay given by

t
q

= =
-

d

c
d

d d

d d2
, with , 4

2
eff

eff
psr lens

psr lens
( )

where θ is the angle the screen extends to as seen from Earth,
and dpsr an dlens are the distances to the pulsar and the screen,
respectively.
The scattering screen can be seen as a lens, with physical size

D= θdlens and corresponding angular resolution λ/D, giving a
physical resolution at the pulsar of Δx= (dpsr− dlens)λ/θdlens,
or, in terms of the scattering time τ,

l
p t

D =
-

x
d d

c

d

d2 2
. 5

psr lens psr

lens

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

The prefactor p1 2 is model dependent, coming from using a
square-law (α= 2) phase-structure function (Cordes & Rickett
1998).
If we were to infer the scattering time from the scintillation

bandwidth, we would find τscint= 1/2πΔν; 160 ns, using
Δν≈ 1MHz. However, this is lower than the apparent∼ 1 μs
scattering seen in Figure 1 and lower than measurements of the

Figure 5. Left: Secondary spectrum of the main pulse. Middle and Right: Amplitude and phase of the main pulse—interpulse cross-spectrum. Note that the amplitude
and phase are point-symmetric and point antisymmetric by definition. There appears to be a phase gradient in τ, reflecting the offset in frequency in the MP–IP
correlation. Similarly, the possible phase gradient along fD reflects the marginally significant offset in time between the main pulse and interpulse.
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scattering at this epoch of τ(600MHz); 0.1 ms (McKee et al.
2018), or τ(350MHz); 0.6 ms (Driessen et al. 2019), which
would correspond to τ; 1.1–1.7μs when scaled by τ∝ ν−4 to
our observing frequency. In Gwinn et al. (1998), it is noted that
the relation τ= 1/2πΔν may underestimate τ in the case of an
extended, resolved emission region as

t
s

p n
=

+

D

1 4

2
, 61

2

( )

where σ1 is the size of the emission region in units of the lens
resolution. In this picture, the scintillation timescale would
depend on the lens resolution and the emission region size.

Using τ; 1 μs and dpsr− dlens; 1.0 pc, then Δx; 290 km
(for the full range of allowed distances, 205Δx 410 km).
Thus, the resolution of the scattering screen is smaller than the
light-cylinder radius of the Crab pulsar, RLC≡ cP/2π= 1600
km.
Additionally, a nominal time offset between the main pulse

and interpulse of ∼1–2 s is ∼10%–20% of the scintillation
timescale, which would suggest that the emission locations are
separated by hundreds of kilometers. We could turn a measured
time offset into a physical separation given the relative velocity
between the pulsar and the screen. Unfortunately, this is not
known, although we can set limits from the proper motion. The
proper motion of the Crab pulsar relative to its local standard of
rest is measured to be 12.5± 2.0 mas yr−1 in the direction
290° ± 9° (east of north; Kaplan et al. 2008), where the
uncertainties attempt to account for the uncertainty in the
velocity of its progenitor, and therewith, of the nebular
material. At an assumed distance of 2 kpc, the implied relative
velocity of the pulsar is ∼120 km s−1, and nonradial motions in
the filaments can be up to ∼70 km s−1 (Backer et al. 2000). A
1–2 s time delay between pulse components would then
suggest a projected separation between the interpulse and
main-pulse emission regions of ∼50–400 km.

As mentioned above, Cordes et al. (2004) argue that the
short scintillation timescale suggests a nebular origin of the
observed scintillation. Here we outline the argument using our
measured values. The scintillation timescale is roughly the time
it takes for the extended emission region to traverse a resolution
element of the scattering screen; using the above resolution and
proper motion gives an estimate of the timescale of
s + D ~x v1 5.5 11 s1

2
pm – , consistent with our observed

time of 9.24± 0.13 s.
Scintillation in the interstellar screen for our given scintillation

bandwidth would result in much higher resolution elements (for
a screen halfway to the pulsar, at dpsr− dlens; 1 kpc, greater by
a factor ~ ~1 kpc 1 pc 30) and scintillation on several-
minute timescales, which is more typical of interstellar
scintillation in this frequency range.

If we assume that pulses occur at a random position within
an extended region, we may also estimate the average expected
correlation. To test this, we simulated 500 pulses with positions
drawn at random from a 2D Gaussian with σxy= σ1Δx. The
correlation coefficient between each pair of pulses is estimated
as = - Dr Ce x

ij
xij

2∣ ∣ ( ), where |xij| is the projected position
difference between each pulse pair, and C< 1 is an unknown
constant that depends on both the intrinsic spectral structure
in the pulses (e.g., Cordes et al. 2004 and the Appendix) and
on whether the separate components forming giant pulses
are resolved. Assuming an isotropic 2D screen or a 1D screen,

and assuming C= 1/3 (i.e., that individual giant pulses are
unresolved, which may not be a good assumption), gives
estimates of the expected correlation coefficient of 〈r1D〉;
0.071, 〈r2D〉; 0.016, respectively, which is on the same order
as our observed average correlation coefficient. We find that
the assumed picture of giant pulses occurring in an extended
region of of ∼1000 km gives a consistent result that broadly
agrees with the observed scintillation bandwidth, scintillation
timescale, and low correlation coefficient. This picture will be
expanded in more detail in R. Lin et al. (2021, in preparation).
The picture we find above differs from that reported by

Cordes et al. (2004), who find that the spectra of nearby pulses at
1.48 GHz and 2.33GHz correlate at a value of ∼1/3. They find
values of the scintillation bandwidth and timescale at 2.33 GHz
of Δνs= 2.3± 0.4MHz and Δts= 35± 5 s, which, scaled to
1.68 GHz, gives Δν= 0.6± 0.1 MHz, and Δt= 25± 4 s
(Cordes et al. 2004 also consistently find Δνs< 0.8 MHz,
Δts= 25± 5 s at 1.48 GHz). They face a similar inconsistency
between the measured scattering time (∼0.1 ms at 600MHz,
which implies ∼1.7 μs at 1. McKee et al. 2018) and the inferred
scattering time from 1/2πΔν≈ 250 ns. However, the scintilla-
tion time they measure is much longer than ours, implying that
the dominant screen must be at a greater distance from the pulsar
or be anisotropic and oriented such that there is poorer resolution
along the direction of the relative velocity between the pulsar
and the screen.

4.3. Fully Quantifying Emission Sizes and Separations

A major uncertainty in our above estimates is the geometry
of the lens. From studies of the scintillation in other pulsars, the
scattering screens in the interstellar medium are known to be
highly anisotropic, as demonstrated most dramatically by the
VLBI observations of Brisken et al. (2010). If the same holds
for the nebular scattering screens, this implies that our
resolution elements are similarly anisotropic. Because the
orientation relative to the proper motion is unknown, the
physical distance between the main and interpulse regions
could be either smaller or larger than our estimate above.
Because the scattering varies with time, it may be possible to
average these effects out.
With a perfectly 1D scattering screen, it is difficult to

produce both a time and frequency offset as there would
necessarily be some position where the main pulse and
interpulse pass through the same position along the screen
axis. One possible way to induce a frequency offset would be a
spatial gradient of the column density (or “prism”) on the scale
of the separation between emission regions. Our frequency
offset of ∼0.3 MHz could be explained by a DM gradient of
ΔDM/DM∼ 0.02% over ∼1000 km. The DM variations of
the Crab have not been probed on these small spatial scales,
although it varies by considerably more than this on longer
timescales (i.e., larger spatial scales, e.g., McKee et al. 2018).
For two spatially separated emission components, Ravi &
Deshpande (2018) find that a 2D screen can produce both a
time and frequency shift over a short timescale. The two-
dimensionality of the screen, or the effect of multiple scattering
screens, may need to be considered.
Furthermore, all values relating to the scattering screen

include the uncertain distance to the Crab pulsar, suggesting
that a parallax distance would improve our constraints. In
addition, the rough localization of the scattering in the
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filaments is based on physical arguments; the results would be
greatly improved through a direct measurement.

The distance to the screen(s) can be constrained through
VLBI and through scintillation measurements across fre-
quency. As the spatial broadening of the Crab is dominated
by the interstellar screen rather than the nebula, VLBI at space-
ground baselines (Rudnitskii et al. 2016) or at low frequencies
(Vandenberg 1976) can help constrain the angular size of the
scattering in the interstellar medium. This in turn can constrain
the size of the nebular screen. The visibility amplitudes will
only decrease below 1 when the scattered image of the pulsar is
not point-like to the interstellar screen. Time-resolved visibi-
lities throughout the rise time of scattered pulses may then
elucidate the nebular scale; by increasing in time delay, one
increases in angular size and thus resolution, so one may
observe the transition point beyond which the nebular screen
becomes resolved. In addition, the interstellar screen will
scintillate only when it does not resolve the nebular screen (the
same argument has been made for scintillation in fast radio
bursts; Masui et al. 2015). The transition frequency for the two
scintillation bandwidths to become apparent in the spectra
could give a size measurement of the nebular screen.

Applying this same analysis across different frequencies or in
times of different scattering in the nebula will also help to quantify
both the separation of the main pulse and interpulse, and the size of
the emitting regions of both components. The correlation function
of spectra is a crude measurement—it is fourth order in the electric
field, and the scintillation pattern is contaminated with intrinsic
pulse substructure. A much cleaner measurement can hopefully be
made in the regime where the duration of giant pulses is much
shorter than the scattering time, akin to the coherent method of
descattering pulses in Main et al. (2017).

As discussed in Section 4.2, we associate the scattering screen
with the filaments in the pulsar wind nebula (Porth et al. 2014).
These filaments appear from the Rayleigh–Taylor instability, when
the pulsar wind pushes and accelerates freely expanding envelope.
This stage terminates after few thousand years when the reverse
shock from the interaction between the supernova remnant at the
interstellar medium reaches the pulsar wind nebula (Gelfand et al.
2009, see review by Slane 2017). Thus we expect these special
scattering environments to be specific for pulsar wind nebulae
during a fairly short period—sufficiently young for the reverse
shock not to reach the pulsar wind nebula, but sufficiently
advanced to have Rayleigh–Taylor-induced filaments.

We thank the anonymous referee, whose comments greatly
improved the draft. We thank Judy Xu, who attempted the initial
1D correlation function of giant pulses. These data were taken as
part of a RadioAstron observing campaign. The RadioAstron
project is led by the Astro Space Center of the Lebedev Physical
Institute of the Russian Academy of Sciences and the Lavochkin
Scientific and Production Association under a contract with the
State Space Corporation ROSCOSMOS, in collaboration with
partner organizations in Russia and other countries.

Appendix
Correcting Noise Biases in the Correlation Coefficient

The intrinsic correlation coefficient between two pulse
spectra P1,2(ν) can be generally defined as

r
n m n m

s s
=

á - - ñ
P P

P P
, , A11 2

1 1 2 2

1 2
( )

( ( ) )( ( ) )
( )

where 〈...〉 indicates the expectation value for an average over
frequency, and μ and σ2 are expectation values of the mean and
variance, respectively. With this definition, one will have ρ= 1
for two pulses with identical frequency structure.
Typically, as an estimate of ρ, one uses the sample

correlation coefficient,

n n

=
-

´å
- -

=

r P P
k

P m P m

s s

,
1

1

, A2i
k i i

1 2

1
1 1 2 2

1 2

( )
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where k is the number of frequency bins, and mp and sp
2 are the

usual sample mean and variance. In the presence of noise,
subtracting m leaves the nominator unbiased, but s2 will be
systematically higher than σ2, and thus r will be biased low.
For normally distributed data, one could approximately correct
with = -s s sp nint

2 2 2, but this does not hold for our case of
power spectra.
Here, we derive an expression that is valid for our case,

where we wish to ensure that 〈r〉= 1 for two pulses that are
sufficiently short for us to approximate them as delta functions
and that are affected by the interstellar medium in the same
way, i.e., have the same impulse response function g(t). In this
case, the measured electric field of a giant pulse is

n n n= +E A g n , A3p p( ) ( ) ( ) ( )

where Ap is the amplitude of the pulse’s delta function in the
Fourier domain, and g(ν) and n(ν) are the Fourier transforms of
the impulse response function and the measurement noise,
respectively. The measured intensity is then

n n n n

n n f n

= = +

+ D

P E A g n

A g n2 cos , A4

p p p

p

2 2 2 2( ) ( ) ( ) ( )
∣ ( )∣∣ ( )∣ ( ( )) ( )

whereΔf(ν) is the phase difference between n(ν) and g(ν), and
where squares are of the absolute values.
The expectation value for the average is

m = á ñ = á ñ + á ñP A g n , A5p p p
2 2 2 ( )

where we have dropped the dependencies on frequency for
brevity, and used that the cross term averages to zero because

fá D ñ =cos 0( ) . Hence, the expectation value for the variance
is

s

f

= á ñ - á ñ + á ñ

-á ñ + á D ñ

A g g n

n A g n4 cos , A6

p p

p

2 4 4 2 2 4

2 2 2 2 2 2

[ ]

( ) ( )

where we have again omitted terms that average to zero. The
last term does not average to zero because of the squaring: it
reduces to á ñá ñA g n2 p

2 2 2 because g and n are independent

and fá D ñ =cos 1 22( ) .
For two pulses differing only by noise, the expectation value

for the numerator of r is

n m n má - - ñ

= á ñ - á ñ

P P

A A g g . A7

1 1 2 2

1
2

2
2 4 2 2

( ( ) )( ( ) )
[ ] ( )

Thus, for an unbiased estimate of r, we need to estimate
s = á ñ - á ñA g gp p

2 4 2 2 1 2[ ] . We can do this by also measuring
the properties of the background, which if dominated by
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measurement noise with the same properties as the pulse, has
μb= 〈n2〉 and = á ñ - á ñs n nb

2 4 2 2 (this will underestimate the
noise if the pulse is strong enough to raise the system
temperature, although in this case, the noise has only a small
contribution to the variance of the pulse and is negligible in
computing r. With this, it follows that to make estimates of r
free of noise bias, we should use

m m m= - - -s s s 2 . A8p b p b bint
2 2 2 ( ) ( )

This is a noisy quantity, however, and simply replacing the
measured variance with this value will lead to some measured
values of sint∼ 0, and thus diverging correlations.

Instead of correcting the sample variances in the denominator
of the sample correlation coefficient, one can use the properties
of the pulse to estimate a correction of the sample correlation
coefficient itself. Assuming the impulse response function g(ν) is
approximately normally distributed, the power spectrum |g(ν)|2

will distributed roughly as a χ2 distribution with two degrees of
freedom, with s mp p

2 2 . Using this, our unbiased estimate of the
variance simplifies to = -s m mp bint

2 2( ) , which uses the well-
measured mean of both the pulse and the background (in our
case, after the bandpass calibration described in Section 2, the
mean and standard deviation of the background are unity).

We should not use the above estimate directly in the
denominator of the standard correlation coefficient in

Equation (A1) because at high S/N, this unnecessarily
introduces additional variance. Instead, we can ensure an
unbiased, noise-corrected estimate of the correlation that works
at both low and high S/N by writing it as

n n
n n

=
á - - ñ

´
- -

r P P
P m P m

s s

m m

m m m m

,
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b b

1 2
1 1 2 2

1 2

1 2
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⎜ ⎟
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( )( )
( )

To test our correlation correction, we first verify our underlying
assumption that the mean and standard deviation are equal by
taking the ratio of the measured values for all pulses. The result is
shown in the top panel of Figure A1: one sees that the ratio is
around unity, except at the highest S/N, where saturation biases
the noise low. Next, we correlated the spectra of all overlapping
pulses between WSRT and AR with S/N> 16 at both telescopes,
shown in the bottom panel of Figure A1. Because these are the
same pulses, but observed at two different telescopes and thus
with different noise, we expect values to scatter around unity.
Indeed, using the full noise correction, we find that the sample
correlations are around a value close to unity, of ∼90%,
independently of S/N (the difference from 100% likely reflects
remaining differences in bandpass etc.; the baseline is too short for
interstellar scintillation to differ). Without the correction, the
sample correlation coefficient is always lower than 100% and
decreases with decreasing S/N.

Figure A1. Top: Ratio of the mean and standard deviation of every giant pulse spectrum. It averages at 1 independently of S/N, showing that it is reasonable to use
this as an assumption to correct for our correlation coefficients. Bottom: Sample correlation coefficients of giant pulse spectra for each pulse detected above 16σ at
both WSRT and AR, ordered by increasing S/N. For the black points, the noise correction described in the Appendix has been applied, while no correction has been
applied for the red points (i.e., the standard formula for the sample correlation coefficient has been used).
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For a further test, we use simulated giant pulses. To begin,
pulses are simulated as identical delta function giant pulses
with the same impulse response function, but different noise, in
the manner described in Main et al. (2017). We find that using
the above estimates, the correlation coefficients between these
pulses indeed average to unity. Trying a slightly more realistic
simulation, forming giant pulses with N fully polarized shots,
with random amplitudes (drawn from a normal distribution)
and random phases, the correlation decreases, saturating at
r= 1/3 for large numbers (N 10), in line with what is
expected from the derivation in Cordes et al. (2004).

Finally, all of the above is for correlations of the power
spectra of a single polarization, and throughout the paper, we
correlate each polarization separately, then average the two
values. For completeness, we note that if one were to use the
total intensity I= PL+ PR= PX+ PY, under the assumption
that the noise is not correlated between the polarizations, the
expectation value for the standard deviation is

s

f

= á ñ - á ñ + á ñ

- á ñ + á D ñ

A g g n

n A g n2 cos , A10

I p

p

2 4 4 2 2 4

2 2 2 2 2 2

[ ]

( ) ( )

and a noise-corrected estimate can be made with

m m m= - - -s s s , A11I b I b bint
2 2 2 ( ) ( )

with the cross term differing by a factor of 2 from the single-
polarization case. Adding more samples with independent
noise, the cross term further diminishes and can be treated as
Gaussian in the limit of large N. We do not use these estimates,
however, because when the giant pulses are not single delta
functions, the estimates start to depend on the degree of
polarization (Cordes et al. 2004), which is a complication we
would rather avoid.
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